Skip to main content

Advertisement

Log in

Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam TC, Schmitt RJ, Holbrook SJ, Brooks AJ, Edmunds PJ, Carpenter RC, Bernardi G (2011) Herbivory, connectivity, and ecosystem resilience: response of a coral reef to a large-scale perturbation. PLoS One 6:e23717. doi:10.1371/journal.pone.0023717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adler PB, Raff DA, Lauenroth WK (2001) The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128:465–479

    Article  Google Scholar 

  • Avgar T, Kuefler D, Fryxell M (2011) Linking rates of diffusion and consumption in relation to resources. Am Nat 178:182–190

    Article  PubMed  Google Scholar 

  • Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. In: Bruton MN (ed) Alternative life-history styles of fishes. Springer, Netherlands, pp 189–214

    Chapter  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  PubMed  Google Scholar 

  • Birrell CL, McCook LJ, Willis B, Diaz-Pulido GA (2008) Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr Mar Biol 46:25–63

    Google Scholar 

  • Brooks A (2013) MCR LTER: Coral reef: long-term population and community dynamics: fishes.  http://metacat.lternet.edu/knb/metacat/knb-lter-mcr.6.48/lter. Accessed 01 Jan 2013

  • Brown JS, Kotler BP (2004) Hazardous duty pay and foraging cost of predation. Ecol Lett 7:999–1014

    Article  Google Scholar 

  • Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc Natl Acad Sci 105:16201–16206. doi:10.1073/pnas.0801946105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkepile DE, Burns CE, Tambling CJ, Amendola E, Buis GM, Govender N, Nelson V, Thompson DI, Zinn AD, Smith MD (2013) Habitat selection by large herbivores in a southern African savanna: the relative roles of bottom-up and top-down forces. Ecosphere 11:139

    Article  Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–363

    Article  Google Scholar 

  • Carpenter RC (1990) Mass mortality of Diadema antillarum. Mar Biol 104:79–86

    Article  Google Scholar 

  • Carpenter RC (2013) MCR LTER: Coral reef: long-term population and community dynamics: other benthic invertebrates. http://metacat.lternet.edu/knb/metacat/knb-lter-mcr.8.26/lter. Accessed 01 Jan 2013

  • Carpenter SR, Kitchell JF, Hodgson JR, Cochran PA, Elser JJ, Lodge MM, Kretchmer D, He X, Von Ende CN (1987) Regulation of lake primary productivity by food web structure. Ecology 68:1863–1876

    Article  Google Scholar 

  • Carpenter RC, Hackney JM, Adey WH (1991) Measurements of primary productivity and nitrogenase activity of coral reef algae in a chamber incorporating oscillatory flow. Limnol Oceanogr 36:40–49

    Article  CAS  Google Scholar 

  • Caughley G, Lawton JH (1981) Plant-herbivore systems. In: Caughley G, Lawton JH (eds) Theoretical ecology. Blackwell, Oxford, pp 132–166

    Google Scholar 

  • Charnov EL (1976) Optimal foraging: the marginal value theorem. Theor Pop Biol 9:129–136

    Article  CAS  Google Scholar 

  • Choat JH, Clements KD, Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs—I: dietary analyses. Mar Biol 140:613–623

    Article  CAS  Google Scholar 

  • Done TJ (1992) Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–132

    Article  Google Scholar 

  • Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99:201–219

    Article  Google Scholar 

  • Dulvy NK, Polunin NVC, Mill AC, Graham NAJ (2004) Size structural change in lightly exploited coral reef fish communities: evidence for weak ecological release. Can J Fish Aquat Sci 61:466–475

    Article  Google Scholar 

  • Ellison GN, Gotelli NJ (2004) A primer of ecological statistics. Sinauer, Sunderland

    Google Scholar 

  • Estes JA, Tinker MT, Williams TM, Doak DF (1998) Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473–476

    Article  CAS  PubMed  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle DA (2011) Trophic downgrading of planet earth. Science 333:301–306

    Article  CAS  PubMed  Google Scholar 

  • Fretwell SD (1972) Populations in a seasonal environment. Princeton University Press, Princeton

    Google Scholar 

  • Fretwell SD, Lucas HL (1970) On territorial behaviour and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheor 19:16–36

    Article  Google Scholar 

  • Fryxell JM (1991) Forage quality and aggregation by large herbivores. Am Nat 138:478–498

    Article  Google Scholar 

  • Fryxell JM, Wilmshurst JF, Sinclair ARE (2004) Predictive models of movement by Serengeti grazers. Ecology 85:2429–2435

    Article  Google Scholar 

  • Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS (2013) Recovery of an isolated coral reef system following severe disturbance. Science 6128:69–71

    Article  Google Scholar 

  • Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326. doi:10.1007/s00338-012-0984-y

    Article  Google Scholar 

  • Han X (2012) MCR LTER: Coral reef: diadema predation and recruitment in Moorea, French Polynesia. Retrieved January 01, 2013.  knb-lter-mcr.2003.2. http://metacat.lternet.edu/knb/metacat/knb-lter-mcr.2003.2/lter. Accessed 01 Jan 2013

  • Hart AM, Klumpp DW, Russ GR (1996a) Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. I. Substratum analysis and feeding ecology of Acanthurus nigrofuscus and Scarus frenatus. Mar Ecol Prog Ser 132:11–19

    Article  Google Scholar 

  • Hart AM, Klumpp DW, Russ GR (1996b) Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. II. Density and biomass of selected species of herbivorous fish and fish-habitat correlations. Mar Ecol Prog Ser 132:21–30

    Article  Google Scholar 

  • Hay ME (1981) The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats. Ecology 62:739–750

    Article  Google Scholar 

  • Hay ME (1984) Patterns of fish and urchin grazing on Caribbean coral reefs: are previous results typical? Ecology 65:446–454. doi:10.2307/1941407

    Article  Google Scholar 

  • Hay ME, Taylor PR (1985) Competition between herbivorous fishes and urchins on Caribbean reefs. Oecologia 65:591–598

    Article  Google Scholar 

  • Hebblewhite M, Merrill EH (2009) Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90:3445–3454. doi:10.1890/08-2090.1

    Article  PubMed  Google Scholar 

  • Hench JL, Leichter JJ, Monismith SG (2008) Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol Oceanogr 53:2681–2694

    Article  Google Scholar 

  • Hixon MA, Brostoff WN (1983) Damselfish as keystone species in reverse: intermediate disturbance and diversity of reef algae. Science 220:511–513

    Article  CAS  PubMed  Google Scholar 

  • Hixon MA, Brostoff WN (1996) Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecol Monogr 66:67–90

    Article  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Hunte W, Wittenberg M (1992) Effects of eutrophication and sedimentation on juvenile corals. II. Settlement. Mar Biol 114:625–631

    Article  Google Scholar 

  • Huntly NJ (1991) Herbivores and the dynamics of communities and ecosystems. Annu Rev Ecol Syst 22:477–503

    Article  Google Scholar 

  • Jarman PJ (1974) The social organization of antelope in relation to their ecology. Behaviour 48:215–266

    Article  Google Scholar 

  • Jennings S, Polunin NVC (1997) Impacts of predator depletion by fishing on the biomass and diversity of non-target reef fish communities. Coral Reefs 16:71–82

    Article  Google Scholar 

  • Jones GP, Andrew NL (1990) Herbivory and patch dynamics on rocky reefs in temperate Australasia, the role of fish and sea urchins. Aust J Ecol 15:505–520

    Article  Google Scholar 

  • Jouffray JB, Nyström M, Norström AV, Williams ID, Wedding LM, Kittinger JN, Williams GJ (2015) Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Phil Trans R Soc B Biol Sci 370:20130268

    Article  Google Scholar 

  • Klaassen RHG, Nolet BA, Bankert D (2006) Movement of foraging tundra swans explained by spatial pattern in cryptic food densities. Ecology 87:2244–2254

    Article  PubMed  Google Scholar 

  • Klumpp DW, McKinnon AD (1989) Temporal and spatial patterns in primary production of a coral reef epilithic algal community. J Exp Mar Biol and Ecol 131:1–22

    Article  Google Scholar 

  • Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32(9):1259–1269. doi:10.1016/j.cageo.2005.11.009

    Article  Google Scholar 

  • Kulbicki N, Guillemot N, Amand M (2005) A general approach to length–weight relationships for New Caledonian Lagoon fishes. Cybium 29:235–252

    Google Scholar 

  • Lewis SM (1986) The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol Monogr 56:183–200

    Article  Google Scholar 

  • McClanahan TR (1997) Primary succession of coral-reef algae: differing patterns on fished versus unfished reefs. J Exp Mar Biol Ecol 218:77–102

    Article  Google Scholar 

  • McClanahan TR, Shafir SH (1990) Causes and consequences of sea urchin abundance and diversity in Kenyan coral. Oecologia 83:362–370

    Article  Google Scholar 

  • McClanahan TR, Kamukuru AT, Muthiga NA, Gilagabher Yebio M, Obura D (1996) Effect of sea urchin reductions on algae, coral, and fish populations. Conserv Biol 10:136–154

    Article  Google Scholar 

  • McNaughton SJ (1985) Ecology of a grazing ecosystem: the Serengeti. Ecol Monogr 53:291–320

    Article  Google Scholar 

  • McNaughton SJ (1990) Mineral nutrition and seasonal movements of African migratory ungulates. Nature 345:613–615

    Article  CAS  Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM (1997) Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278:1798–1800

    Article  CAS  PubMed  Google Scholar 

  • Montgomery WL, Myrberg AA, Fishelson L (1989) Feeding ecology of surgeonfishes (Acanthuridae) in the northern Red Sea, with particular reference to Acanthurus nigrofuscus (Forsskal). J Exp Mar Biol Ecol 132:179–207

    Article  Google Scholar 

  • Morrison D (1988) Comparing fish and urchin grazing in shallow and deeper coral reef algal communities. Ecology 69:1367–1382

    Article  Google Scholar 

  • Morse DE, Hooker N, Morse ANC, Jensen RA (1988) Control of larval metamorphosis and recruitment in sympatric agariciid corals. J Exp Mar Biol Ecol 116:193–217

    Article  Google Scholar 

  • Mumby PJ, Steneck RS (2008) Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol 23:555–563

    Article  PubMed  Google Scholar 

  • Nyström M, Folke C, Moberg F (2000) Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol Evol 15:413–417

    Article  PubMed  Google Scholar 

  • Ogutu JO, Piepho HP, Reid RS, Rainy ME, Kruska RL, Worden S, Nyabenge M, Hobbs NT (2010) Large herbivore responses to water and settlements in savannas. Ecol Monogr 80:241–266

    Article  Google Scholar 

  • Paddack MJ, Cowen RK, Sponaugle S (2006) Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs. Coral Reefs 25:461–472. doi:10.1007/s00338-006-0112-y

    Article  Google Scholar 

  • Polunin NVC, Klumpp DW (1992) Algal food supply and grazer demand in a very productive coral-reef zone. J Exp Mar Biol Ecol 164:1–15

    Article  Google Scholar 

  • Pratchett MS, Munday MS, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes. Ecological and economic consequences. Oceanogr Mar Biol Annu Rev 46:251–296

    Article  Google Scholar 

  • Price N (2010) Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163:747–758

    Article  PubMed  PubMed Central  Google Scholar 

  • Prins HHT, Vanderjeugd HP (1993) Herbivore population crashes and woodland structure in east Africa. J Ecol 81:305–314

    Article  Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Quart Rev Biol 52:137–154

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rasher DB, Hoey AS, Hay ME (2013) Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94:1347–1358

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson DR, Gaines DS (1986) Interference competition structures habitat use in a local assemblage of coral reef surgeonfishes. Ecology 67(1372):1383

    Google Scholar 

  • Robertson DR, Polunin NVC (1981) Coexistence: symbiotic sharing of feeding territories and algal food by some coral reef fishes from the Western Indian Ocean. Mar Biol 62(185):195

    Google Scholar 

  • Russ GR (2003) Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22:63–67. doi:10.1007/s00338-003-0286-5

    Google Scholar 

  • Sammarco PW, Carleton JH (1981) Damselfish territoriality and coral community structure: reduced grazing, coral recruitment, and effects on coral spat. In: Proceedings of the 4th International Coral Reef Symposium, vol 2. pp 524–535

  • Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Sala E (2008) Baselines and degradation of coral reefs in the northern Line Islands. PLoS One 3:e1548

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  PubMed  Google Scholar 

  • Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155:141–153

    Article  PubMed  Google Scholar 

  • Schoener TW (1971) Theory of feeding strategies. Ann Rev Ecol Syst 2:369–404

    Article  Google Scholar 

  • Solomon ME (1949) The natural control of animal populations. J Anim Ecol 18:1–35

    Article  Google Scholar 

  • Steneck RS (1988) Herbivory on coral reefs: a synthesis. In: Choat JH et al (eds) Proc 6th Int Coral Reef Symp, vol 1. Townsville, Australia, pp 37–49

    Google Scholar 

  • Stockwell B, Jadloc CRL, Abesamis RA, Alcala AC, Russ GR (2009) Trophic and benthic responses to no-take marine reserve protection in the Philippines. Mar Ecol Prog Ser 389:1–15

    Article  Google Scholar 

  • Sutherland WJ (1983) Aggregation and the “ideal free” distribution. J Anim Ecol 52:821–828

    Article  Google Scholar 

  • Sutherland WJ, Parker GA (1992) The relationship between continuous input and interference models of ideal free distributions with unequal competitors. Anim Behav 44:345–355

    Article  Google Scholar 

  • Tregenza T (1995) Building on the ideal free distribution. Adv Ecol Res 26:253–307

    Article  Google Scholar 

  • Vermeij MJA, van Moorselaar I, Engelhard S, Hornlein C, Vonk SM, Visser PM (2010) The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS One 5:e14312. doi:10.1371/journal.pone.0014312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh JQ, Bellwood DR (2012) How far do schools of roving herbivores rove? A case study using Scarus rivulatus. Coral Reefs 31:9911003. doi:10.1007/s00338-012-0922-z

    Google Scholar 

  • Williams ID, Polunin NVC (2001) Large-scale associations between macroalgal cover and grazer biomass on mid-depth reefs in the Caribbean. Coral Reefs 19:358–366. doi:10.1007/s003380000121

    Article  Google Scholar 

  • Wilson SK, Bellwood DR, Choat JH, Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr Mar Biol Annu Rev 41:279–309

    Google Scholar 

Download references

Acknowledgments

This research was supported the National Science Foundation via the Moorea Coral Reef LTER (OCE 10-26852 to CSUN), the Office of Graduate Studies at California State University Northridge, and CSUN College of Science and Mathematics. P. Edmunds, R. Carpenter, and A. Brooks provided invaluable advice and comments. We appreciate the logistical assistance provided by the staff of the Richard B. Gump South Pacific Research Station. This is contribution number 210 of the Moorea Coral Reef LTER.

Author contribution statement

JST and MAS conceived and designed the study, analyzed the data, and wrote the manuscript. JST conducted fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse S. Tootell.

Additional information

Communicated by Deron E. Burkepile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tootell, J.S., Steele, M.A. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia 181, 13–24 (2016). https://doi.org/10.1007/s00442-015-3418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3418-z

Keywords

Navigation