Skip to main content
Log in

Environmental tolerances of rare and common mangroves along light and salinity gradients

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Although mangroves possess a variety of morphological and physiological adaptations for life in a stressful habitat, interspecific differences in survival and growth under different environmental conditions can shape their local and geographic distributions. Soil salinity and light are known to affect mangrove performance, often in an interactive fashion. It has also been hypothesized that mangroves are intrinsically shade intolerant due to the high physiological cost of coping with saline flooded soils. To evaluate the relationship between stress tolerance and species distributions, we compared responses of seedlings of three widespread mangrove species and one narrow endemic mangrove species in a factorial array of light levels and soil salinities in an outdoor laboratory experiment. The more narrowly distributed species was expected to exhibit a lower tolerance of potentially stressful conditions. Two of the widespread species, Avicennia germinans and Lumnitzera racemosa, survived and grew well at low–medium salinity, regardless of light level, but performed poorly at high salinity, particularly under high light. The third widespread species, Rhizophora mangle, responded less to variation in light and salinity. However, at high salinity, its relative growth rate was low at every light level and none of these plants flushed leaves. As predicted, the rare species, Pelliciera rhizophorae, was the most sensitive to environmental stressors, suffering especially high mortality and reduced growth and quantum yield under the combined conditions of high light and medium–high salinity. That it only thrives under shaded conditions represents an important exception to the prevailing belief that halophytes are intrinsically constrained to be shade intolerant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agresti A (2013) Categorical data analysis, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Baker NR, Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic, Dordrecht, pp 65–82

  • Ball MC (1988a) Ecophysiology of mangroves. Trees 2:129–142. doi:10.1007/BF00196018

    Article  Google Scholar 

  • Ball MC (1988b) Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina I. Water use in relation to growth, carbon partitioning, and salt balance. Aust J Plant Physiol 15:447–464. doi:10.1071/PP9880447

    Article  Google Scholar 

  • Ball MC (1996) Comparative ecophysiology of mangrove forest and tropical lowland moist rainforest. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 461–496

    Chapter  Google Scholar 

  • Ball MC (2002) Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients. Trees Struct Funct 16:126–139. doi:10.1007/s00468-002-0169-3

    Article  Google Scholar 

  • Ball MC, Critchley C (1982) Photosynthetic responses to irradiance by the grey mangrove, Avicennia marina, grown under different light regimes. Plant Physiol 70:1101–1106. doi:10.1104/pp.70.4.1101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ball MC, Passioura JB (1995) Carbon gain in relation to water use: photosynthesis in mangroves. In: Schulze ED, Caldwell NM (eds) Ecophysiology of photosynthesis. Springer, Heidelberg, pp 247–257

    Chapter  Google Scholar 

  • Ball MC, Pidsley SM (1995) Growth responses to salinity in relation to distribution of two mangrove species, Sonneratia alba and S. lanceolata, in northern Australia. Funct Ecol 9:77–85. doi:10.2307/2390093

    Article  Google Scholar 

  • Bishop YM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis: theory and practice. MIT Press, Cambridge

    Google Scholar 

  • Björkman O, Demmig B, Andrews TJ (1988) Mangrove photosynthesis: response to high-irradiance stress. Aust J Plant Physiol 15:43–61. doi:10.1071/PP9880043

    Article  Google Scholar 

  • Bompy F, Lequeue G, Imbert D, Dulormne M (2014) Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three Neotropical mangrove species. Plant Soil 380:399–413. doi:10.1007/s11104-014-2100-2

    Article  CAS  Google Scholar 

  • Boulangeat I, Lavergne S, Van Es J, Garraud L, Thuiller W (2012) Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. J Biogeogr 39:204–214. doi:10.1111/j.1365-2699.2011.02581.x

    Article  Google Scholar 

  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci USA 111:723–727. doi:10.1073/pnas.131580011

  • Cheeseman J, Clough BF, Carter DR, Lovelock CE, Eong OJ, Sim RG (1991) The analysis of photosynthetic performance in leaves under field conditions: a case study using Bruguiera mangroves. Photosynth Res 29:11–22. doi:10.1007/BF00035202

    CAS  PubMed  Google Scholar 

  • Cheeseman JM, Herendeen LB, Cheeseman AT, Clough BF (1997) Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ 20:579–588. doi:10.1111/j.1365-3040.1997.00096.x

    Article  CAS  Google Scholar 

  • Chimner RA, Fry B, Kaneshiro MY, Cormier N (2006) Current extent and historical expansion of introduced mangroves on O’ahu, Hawai’i. Pac Sci 60:377–383. doi:10.1353/psc.2006.0013

    Article  Google Scholar 

  • Collins SL, Glenn SM (1990) A hierarchical analysis of species' abundance patterns in grassland vegetation. Am Nat 135: 633–648. http://www.jstor.org/stable/2462027

  • Croci S, Le Quilliec P, Clergeau P (2007) Geographical range as predictor of spatial extent of invading birds. Biodivers Conserv 16:511–524. doi:10.1007/s10531-006-6732-2

  • Dawson W, Fischer M, van Kleunen M (2012) Common and rare plant species respond differently to fertilization and competition, whether they are alien or native. Ecol Lett 15:873–880. doi:10.1111/j.1461-0248.2012.01811.x

    Article  PubMed  Google Scholar 

  • Demes K, Bell SS, Dawes CJ (2009) The effects of phosphate on the biomineralization of the green alga, Halimeda incrassata (Ellis) Lam. J Exp Mar Biol Ecol 374:123–127

    Article  CAS  Google Scholar 

  • Feller IC, McKee KL, Whigham DF, O’Neill JP (2003a) Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62:145–175. doi:10.1023/A:1021166010892

    Article  CAS  Google Scholar 

  • Feller IC, Whigham DF, McKee KL, Lovelock CE (2003b) Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia 134:405–414. doi:10.1007/s00442-002-1117-z

    Article  PubMed  Google Scholar 

  • Fienberg SE (1970) The analysis of multidimensional contingency tables. Ecology 51:419–433. doi:10.2307/1935377

    Article  Google Scholar 

  • Fourqurean JW, Smith TJ III, Possley J, Collins TM, Lee D, Namoff S (2010) Are mangroves in the tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of South Florida. Biol Invas 12:2509–2522. doi:10.1007/s10530-009-9660-8

    Article  Google Scholar 

  • Fuchs HP (1970) Ecological and palynological notes on Pelliciera rhizophorae. Acta Bot Neerl 19:884–894

    Article  Google Scholar 

  • Gaston KJ (1994) Rarity. Chapman and Hall, London

    Book  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Gaston KJ, Kunin WE (1997) Rare-common differences: an overview. In: Gaston KJ, Kunin WE (eds) The biology of rarity. Population and Community Biology, vol 17. Springer, Dordrecht, pp 12–29

  • Gaston KJ, Lawton JH (1990) Effects of scale and habitat on the relationship between regional distribution and local abundance. Oikos 58:329–333. doi:10.2307/3545224

    Article  Google Scholar 

  • Gentry AH (1982) Phytogeographic patterns as evidence for a Chocó refuge. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 112–136

    Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-Gen Subj 990:87–92. doi:10.1016/S0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  • Gotelli NJ, Simberloff D (1987) The distribution and abundance of tallgrass prairie plants: a test of the core-satellite hypothesis. Am Nat 130:18–35. http://www.jstor.org/stable/2461878

  • Graham A (1977) New records of Pelliciera (Theaceae/Pellicieriaceae) in the Tertiary of the Caribbean. Biotropica 9:48–52. doi:10.2307/2387858

    Article  Google Scholar 

  • Hanski I (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38:210–221. http://www.jstor.org/stable/3544021

  • Hanski I, Kouki J, Halkka A (1993) Three explanations of the positive relationship between distribution and abundance of species. In: Ricklefs RE, Schluter D (eds) Community diversity: historical and geographical perspectives. University Chicago Press, Chicago, pp 108–116

    Google Scholar 

  • Harper JL (1981) The meanings of rarity. In: Synge H (ed) The biological aspects of rare plant conservation. Wiley, New York, pp 189–203

    Google Scholar 

  • Hogarth PJ (2007) The biology of mangroves and seagrasses, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Janzen DH (1985) Mangroves: where’s the understory? J Trop Ecol 1:89–92. doi:10.1017/S0266467400000122

    Article  Google Scholar 

  • Jiménez JA (1984) A hypothesis to explain the reduced distribution of the mangrove Pelliciera rhizophorae Tr and Pl. Biotropica 16:304–308. http://www.jstor.org/stable/2387939

  • Krauss KW, Allen JA (2003) Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii. Aquat Bot 77:311–324. doi:10.1016/j.aquabot.2003.08.004

    Article  Google Scholar 

  • Krauss KW, Ball MC (2013) On the halophytic nature of mangroves. Trees 27:7–11. doi:10.1007/s00468-012-0767-7

    Article  Google Scholar 

  • Krauss KW, Lovelock CE, McKee KL, López-Hoffman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127. doi:10.1016/j.aquabot.2007.12.014

    Article  Google Scholar 

  • Kruckeberg AR, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Ann Rev Ecol Syst 16: 447–479. http://www.jstor.org/stable/2097056

  • Leishman MR, Thompson VP, Cooke J (2010) Native and exotic invasive plants have fundamentally similar carbon capture strategies. J Ecol 98:28–42. doi:10.1111/j.1365-2745.2009.01608.x

    Article  CAS  Google Scholar 

  • Lin G, Sternberg LSL (1992) Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of red mangrove (Rhizophora mangle L.). Aust J Plant Physiol 19:509–517. doi:10.1071/PP9920509

  • Lin G, Sternberg LSL (1993) Effects of salinity fluctuation on photosynthetic gas exchange and plant growth of the red mangrove (Rhizophora mangle L.). J Exp Bot 44:9–16. doi:10.1093/jxb/44.1.9

    Article  Google Scholar 

  • López-Hoffman L, DeNoyer JL, Monroe IE, Shaftel R, Anten NPR, Martínez-Ramos M, Ackerly DD (2006) Mangrove seedling net photosynthesis, growth, and survivorship are interactively affected by salinity and light. Biotropica 38:606–616. doi:10.1111/j.1744-7429.2006.00189.x

    Article  Google Scholar 

  • López-Hoffman L, Anten NPR, Martínez-Ramos M, Ackerly DD (2007) Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels. Oecologia 150:545–556. doi:10.1007/s00442-006-0563-4

    Article  PubMed  Google Scholar 

  • Lovelock CE, Ball MC (2002) Influence of salinity on photosynthesis of halophytes. In: Lauchli A, Luttge U (eds) Salinity: environment—plants—molecules. Kluwer, Dordrecht, pp 315–339

  • Lugo AE (1986) Mangrove understory: an expensive luxury? J Trop Ecol 2:287–288. doi:10.1017/S0266467400000912

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659

    Article  CAS  PubMed  Google Scholar 

  • McKee KL (1995) Seedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physico-chemical factors. Oecologia 101:448–460. doi:10.1007/BF00329423

    Article  Google Scholar 

  • Moran, R (1980) Noteworthy collections: Avicennia marina var. resinifera. Madroño 27:143. http://www.jstor.org/stable/41426134

  • Moseman SM, Zhang R, Qian PY, Levin LA (2008) Diversity and functional responses of nitrogen-fixing microbes to three wetland invasions. Biol Invas 11:225–239. doi:10.1007/s10530-008-9227-0

    Article  Google Scholar 

  • Naidoo G, von Willert DJ (1999) Gas exchange characteristics of the tropical mangrove, Pelliciera rhizophorae. Mangroves Salt Marshes 3:147–153. doi:10.1023/A:1009943408779

    Article  Google Scholar 

  • Paine TCE, Marthews TR, Vogt DR, Purves D, Rees M, Hector A, Turnbull LA (2012) How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Method Ecol Evol 3:245–256. doi:10.1111/j.2041-210X.2011.00155.x

    Article  Google Scholar 

  • Pemberton RE, Liu H (2009) Marketing time predicts naturalization of horticultural plants. Ecology 90:69–80. doi:10.1890/07-1516.1

    Article  PubMed  Google Scholar 

  • Perry CL, Mendelssohn IA (2009) Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29:396–406. doi:10.1672/08-100.1

    Article  Google Scholar 

  • Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) The biological aspects of rare plant conservation. Wiley, New York, pp 205–217

    Google Scholar 

  • Rabinowitz D, Cairns S, Dillon T (1986) Seven forms of rarity and their frequency in the flora of the British Isles. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 182–204

  • Reef R, Lovelock CE (2014) Regulation of water balance in mangroves. Ann Bot–London. doi:10.1093/aob/mcu174

  • Rees M, Osborne CP, Woodward FI, Hulme SP, Turnbull LA, Taylor SH (2010) Partitioning the components of relative growth rate: how important is plant size variation? Am Nat 176:E152–E161. doi:10.1086/657037

    Article  PubMed  Google Scholar 

  • Rosenzweig ML, Lomolino MV (1997) Who gets the short bits of the broken stick? In: Gaston KJ, Kunin WE (eds) The biology of rarity. Population and Community Biology, vol 17. Springer, Dordrecht, pp 63–90

  • Rull V (2001) A quantitative palynological record from the early Miocene of western Venezuela, with emphasis on mangroves. Palynology 25:109–126. doi:10.2113/0250109

    Article  Google Scholar 

  • Sauer JD (1988) Plant migration: the dynamics of geographic patterning in seed plant species. University of California Press, Berkeley

    Google Scholar 

  • Shah M, Reshi ZA, Lavoie C (2012) Predicting plant invasiveness from native range size: clues from the Kashmir Himalaya. J Plant Ecol 5:167–173. doi:10.1093/jpe/rtr021

    Article  Google Scholar 

  • Slatyer R, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104–1114. doi:10.1111/ele.12140

    Article  PubMed  Google Scholar 

  • Smith TJ III (1992) Forest structure. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, DC, pp 101–136

  • Smith JMB (1996) Perspectives on an invasion of paradise: Rhizophora stylosa on Moorea, French Polynesia. Aust Geog Stud 34:81–87. doi:10.1111/j.1467-8470.1996.tb00104.x

    Article  Google Scholar 

  • Snedaker SC, Lahmann EJ (1988) Mangrove understorey absence: a consequence of evolution? J Trop Ecol 4:311–314. doi:10.1017/S0266467400002881

    Article  Google Scholar 

  • Stevens PW, Fox SL, Montague CL (2006) The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetl Ecol Manage 14:435–444. doi:10.1007/s11273-006-0006-3

    Article  Google Scholar 

  • Taylor FJ (1979) Rhizophora in the Society Islands. Pac Sci 33:173–176

    Google Scholar 

  • Tecco PA, Diaz S, Cabido M, Urcelay C (2010) Functional traits of alien plants across contrasting climatic and land-use regimes: do aliens join the locals or try harder than them? J Ecol 98:17–27. doi:10.1111/j.1365-2745.2009.01592.x

    Article  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Winer BJ, Brown DR, Michels KM (1991) Statistical principles in experimental design, 3rd edn. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

The authors thank Woody Lee for assisting with field and experimental logistics at the Smithsonian Marine Station at Fort Pierce (SMS), and Eric Brown for his help collecting Pelliciera propagules in Panama. Revisions suggested by Paul Fine, Perry de Valpine, and Betsy Mitchell to an early draft of the manuscript greatly improved the final version. The work in Florida was supported by graduate research fellowships to EMD from the Link Foundation and the National Science Foundation. The experiments comply with the current laws of the United States where they were performed. The collection of mangrove propagules in Panama was funded by NSF grant DEB-0613741 to WPS, and conducted under research permit SC/P-19-10 and export permit SEX/P-26-10 to EMD from the Autoridad Nacional del Ambiente, Panamá. This is SMS Contribution No. 999.

Author contribution statement

EMD and ICF conceived and designed the experiment. EMD performed the experiment. EMD and WPS analyzed the data and wrote the manuscript; ICF provided editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily M. Dangremond.

Additional information

Communicated by Amy Freestone.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dangremond, E.M., Feller, I.C. & Sousa, W.P. Environmental tolerances of rare and common mangroves along light and salinity gradients. Oecologia 179, 1187–1198 (2015). https://doi.org/10.1007/s00442-015-3408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3408-1

Keywords

Navigation