Skip to main content
Log in

Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Anthropogenic nitrogen deposition and projected increases in rainfall variability (the frequency of drought and heavy rainfall events) are expected to strongly influence ecosystem processes such as litter decomposition. However, how these two global change factors interact to influence litter decomposition is largely unknown. I examined how increased rainfall variability and nitrogen addition affected mass and nitrogen loss of litter from two tallgrass prairie species, Schizachyrium scoparium and Solidago canadensis, and isolated the effects of each during plant growth and during litter decomposition. I increased rainfall variability by consolidating ambient rainfall into larger events and simulated chronic nitrogen deposition using a slow-release urea fertilizer. S. scoparium litter decay was more strongly regulated by the treatments applied during plant growth than by those applied during decomposition. During plant growth, increased rainfall variability resulted in S. scoparium litter that subsequently decomposed more slowly and immobilized more nitrogen than litter grown under ambient conditions, whereas nitrogen addition during plant growth accelerated subsequent mass loss of S. scoparium litter. In contrast, S. canadensis litter mass and N losses were enhanced under either N addition or increased rainfall variability both during plant growth and during decomposition. These results suggest that ongoing changes in rainfall variability and nitrogen availability are accelerating nutrient cycling in tallgrass prairies through their combined effects on litter quality, environmental conditions, and plant community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. doi:10.2307/3546886

    Article  Google Scholar 

  • Anaya C, Jaramillo V, Martínez-Yrízar A, García-Oliva F (2012) Large rainfall pulses control litter decomposition in a tropical dry forest: evidence from an 8 year study. Ecosystems 15:652–663. doi:10.1007/s10021-012-9537-z

    Article  Google Scholar 

  • Appel T (1998) Non-biomass soil organic N—the substrate for N mineralization flushes following soil drying–rewetting and for organic N rendered CaCl2-extractable upon soil drying. Soil Biol Biochem 30:1445–1456. doi:10.1016/S0038-0717(97)00230-7

    Article  CAS  Google Scholar 

  • Attiwill P, Adams M (1993) Nutrient cycling in forests. New Phytol 124:561–582. doi:10.1111/j.1469-8137.1993.tb03847.x

    Article  CAS  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi:10.1007/s00442-004-1519-1

    Article  PubMed  Google Scholar 

  • Beier C, Beierkuhnlein C, Wohlgemuth T et al (2012) Precipitation manipulation experiments—challenges and recommendations for the future. Ecol Lett 15:899–911. doi:10.1111/j.1461-0248.2012.01793.x

    Article  PubMed  Google Scholar 

  • Bloor JMG, Bardgett RD (2012) Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspect Plant Ecol Evol Syst 14:193–204. doi:10.1016/j.ppees.2011.12.001

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. doi:10.1890/08-1140.1

    Article  CAS  PubMed  Google Scholar 

  • Borer ET, Harpole WS, Adler PB et al (2014) Finding generality in ecology: a model for globally distributed experiments. Methods Ecol Evol 5:65–73. doi:10.1111/2041-210X.12125

    Article  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365. doi:10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2

  • Cornwell WK, Bhaskar R, Sack L et al (2007) Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct Ecol 21:1063–1071. doi:10.1111/j.1365-2435.2007.01323.x

    Article  Google Scholar 

  • Dyer ML, Meentemeyer V, Berg B (1990) Apparent controls of mass loss rate of leaf litter on a regional scale. Scand J Res 5:311–323. doi:10.1080/02827589009382615

    Article  Google Scholar 

  • Everard K, Seabloom EW, Harpole WS, de Mazancourt C (2010) Plant water use affects competition for nitrogen: why drought favors invasive species in California. Am Nat 175:85–97

    Article  PubMed  Google Scholar 

  • Fay PA, Carlisle JD, Danner BT et al (2002) Altered rainfall patterns, gas exchange, and growth in grasses and forbs. Int J Plant Sci 163:549–557. doi:10.1086/339718

    Article  Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK et al (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137:245–251. doi:10.1007/s00442-003-1331-3

    Article  PubMed  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Influence of drying-rewetting frequency on soil bacterial community structure. Microb Ecol 45:63–71. doi:10.1007/s00248-002-1007-2

    Article  CAS  PubMed  Google Scholar 

  • Fry EL, Manning P, Power SA (2014) Ecosystem functions are resistant to extreme changes to rainfall regimes in a mesotrophic grassland. Plant Soil 381:351–365. doi:10.1007/s11104-014-2137-2

    Article  CAS  Google Scholar 

  • Hobbie SE (2008) Nitrogen effects on decomposition: a 5-year experiment in eight temperate sites. Ecology 89:2633–2644

    Article  PubMed  Google Scholar 

  • Hobbie SE, Vitousek PM (2000) Nutrient limitation of decomposition in hawaiian forests. Ecology 81:1867–1877. doi:10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2

  • Janssen BH (1996) Nitrogen mineralization in relation to C: N ratio and decomposability of organic materials. Plant Soil 181:39–45. doi:10.1007/BF00011290

    Article  CAS  Google Scholar 

  • Jentsch A, Kreyling J, Elmer M et al (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702. doi:10.1111/j.1365-2745.2011.01817.x

    Article  Google Scholar 

  • Jin VL, Haney RL, Fay PA, Polley HW (2013) Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality. Soil Biol Biochem 58:172–180. doi:10.1016/j.soilbio.2012.11.024

    Article  CAS  Google Scholar 

  • Knapp AK, Briggs JM, Hartnett DC, Collins SL (eds) (1998) Grassland dynamics: long-term ecological research in tallgrass prairie. Oxford University Press, New York

    Google Scholar 

  • Knapp AK, Beier C, Briske DD et al (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–821. doi:10.1641/B580908

    Article  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  • Kreyling J, Beier C (2013) Complexity in climate change manipulation experiments. Bioscience 63:763–767. doi:10.1525/bio.2013.63.9.12

    Article  Google Scholar 

  • Kulmatiski A, Beard KH (2013) Root niche partitioning among grasses, saplings, and trees measured using a tracer technique. Oecologia 171:25–37. doi:10.1007/s00442-012-2390-0

    Article  PubMed  Google Scholar 

  • Liao J, Hou Z, Wang G (2002) Effects of elevated CO2 and drought on chemical composition and decomposition of spring wheat (Triticum aestivum). Funct Plant Biol 29:891–897

    Article  CAS  Google Scholar 

  • Makkonen M, Berg MP, van Logtestijn RSP et al (2013) Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122:987–997. doi:10.1111/j.1600-0706.2012.20750.x

    Article  Google Scholar 

  • Manning P, Saunders M, Bardgett RD et al (2008) Direct and indirect effects of nitrogen deposition on litter decomposition. Soil Biol Biochem 40:688–698. doi:10.1016/j.soilbio.2007.08.023

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. doi:10.2307/1936780

    Article  CAS  Google Scholar 

  • Parton W, Silver WL, Burke IC et al (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364. doi:10.1126/science.1134853

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Knops J, Tilman D et al (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–812. doi:10.1038/35071062

    Article  CAS  PubMed  Google Scholar 

  • Reichstein M, Bahn M, Ciais P et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295. doi:10.1038/nature12350

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H, Dannenmann M, Gessler A et al (2009) Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biol 11:4–23. doi:10.1111/j.1438-8677.2009.00241.x

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP (1999) Standard soil methods for long-term ecological research. Oxford University Press, Oxford

  • Sala OE, Chapin FS, Iii et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770

    Article  CAS  PubMed  Google Scholar 

  • Sardans J, Peñuelas J, Ogaya R (2008) Drought-induced changes in C and N stoichiometry in a Quercus ilex mediterranean forest. For Sci 54:513–522

    Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012) The C:N: P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol Evol Syst 14:33–47. doi:10.1016/j.ppees.2011.08.002

    Article  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394. doi:10.1890/06-0219

    Article  PubMed  Google Scholar 

  • Seastedt TR, Briggs JM, Gibson DJ (1991) Controls of nitrogen limitation in tallgrass prairie. Oecologia 87:72–79. doi:10.1007/BF00323782

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW et al (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi:10.1002/jgrd.50188

    Article  Google Scholar 

  • Smith VC, Bradford MA (2003) Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters? Oikos 102:235–242. doi:10.1034/j.1600-0706.2003.12503.x

    Article  Google Scholar 

  • Stocker T, Qin D, Plattner G-K, et al (2014) Climate change 2013: The physical science basis. Cambridge University Press, Cambridge

  • Stump L, Binkley D (1993) Relationships between litter quality and nitrogen availability in Rocky-Mountain forests. Can J For Res-Rev Can Rech For 23:492–502. doi:10.1139/x93-067

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

  • Tu L, Hu H, Chen G et al (2014) Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS ONE 9:e88752. doi:10.1371/journal.pone.0088752

    Article  PubMed  PubMed Central  Google Scholar 

  • Valera-Burgos J, Zunzunegui M, Cruz Diaz-Barradas M (2013) Do leaf traits and nitrogen supply affect decomposability rates of three Mediterranean species growing under different competition levels? Pedobiologia 56:113–119. doi:10.1016/j.pedobi.2013.03.002

    Article  CAS  Google Scholar 

  • Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876. doi:10.2307/1941591

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Walter J, Hein R, Beierkuhnlein C et al (2013) Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biol Biochem 60:10–18. doi:10.1016/j.soilbio.2013.01.018

    Article  CAS  Google Scholar 

  • Weih M, Bonosi L, Ghelardini L, Ronnberg-Wastljung AC (2011) Optimizing nitrogen economy under drought: increased leaf nitrogen is an acclimation to water stress in willow (Salix spp.). Ann Bot 108:1347–1353. doi:10.1093/aob/mcr227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Jeffrey S. Dukes for editorial comments, Nicholas Smith for his role in the PRICLE project, as well as Alan Clinton, Raj Lal, and Alejandro Salazar for field assistance. The PRICLE project was supported by the Purdue Climate Change Research Center (PCCRC). I was supported by USDA Agro-ecosystem Services National Need Fellowship.

Author contribution statement

MJS designed the experiment, conducted the field work, performed all analyses, and prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Schuster.

Additional information

Communicated by Michael Madritch.

This manuscript is being submitted for consideration as a highlighted student paper, as its author and progenitor is a graduate student. The manuscript addresses a novel and understudied aspect of global change ecology, namely the interaction of anthropogenic nitrogen and increased rainfall variability to affect prairie litter decomposition, and utilizes an innovative design to illuminate the mechanisms responsible for the observed changes in ecosystem processes.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuster, M.J. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie. Oecologia 180, 645–655 (2016). https://doi.org/10.1007/s00442-015-3396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3396-1

Keywords

Navigation