, Volume 180, Issue 1, pp 11–21 | Cite as

Sediment pollution impacts sensory ability and performance of settling coral-reef fish

  • J. Jack O’Connor
  • David Lecchini
  • Hayden J. Beck
  • Gwenael Cadiou
  • Gael Lecellier
  • David J. Booth
  • Yohei Nakamura
Highlighted Student Research


Marine organisms are under threat globally from a suite of anthropogenic sources, but the current emphasis on global climate change has deflected the focus from local impacts. While the effect of increased sedimentation on the settlement of coral species is well studied, little is known about the impact on larval fish. Here, the effect of a laterite “red soil” sediment pollutant on settlement behaviour and post-settlement performance of reef fish was tested. In aquarium tests that isolated sensory cues, we found significant olfaction-based avoidance behaviour and disruption of visual cue use in settlement-stage larval fish at 50 mg L−1, a concentration regularly exceeded in situ during rain events. In situ light trap catches showed lower abundance and species richness in the presence of red soil, but were not significantly different due to high variance in the data. Prolonged exposure to red soil produced altered olfactory cue responses, whereby fish in red soil made a likely maladaptive choice for dead coral compared to controls where fish chose live coral. Other significant effects of prolonged exposure included decreased feeding rates and body condition. These effects on fish larvae reared over 5 days occurred in the presence of a minor drop in pH and may be due to the chemical influence of the sediment. Our results show that sediment pollution of coral reefs may have more complex effects on the ability of larval fish to successfully locate suitable habitat than previously thought, as well as impacting on their post-settlement performance and, ultimately, recruitment success.


Behavioural ecology Coral reefs Environmental pollution Larval settlement Olfaction 



The authors would like to thank the staff at the Tropical Biosphere Research Centre (University of the Ryukyus) for their logistical support, and the Australian Museum, the Sydney Institute of Marine Science and the University of Technology Sydney for their financial support. We also thank Ryuta Suzuki and Yasuaki Tanaka for assistance with the field and laboratory experiments. This research was carried out in accordance with Japanese law and was supported by the Japan Society for the Promotion of Science (Grant No. 24780188). All applicable institutional and/or national guidelines for the care and use of animals were followed.

Supplementary material

442_2015_3367_MOESM1_ESM.pdf (745 kb)
Supplementary material (PDF 746 kb)


  1. Almany GR, Webster MS (2006) The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs 25:19–22. doi: 10.1007/s00338-005-0044-y CrossRefGoogle Scholar
  2. Arakaki T et al (2005) Simultaneous measurement of hydrogen peroxide and Fe species (Fe(II) and Fe(tot)) in Okinawa Island Seawater: impacts of red soil pollution. J Oceanogr 61:561–568CrossRefGoogle Scholar
  3. Bak RP (1978) Lethal and sublethal effects of dredging on reef corals. Mar Pollut Bull 9:14–16. doi: 10.1016/0025-326X(78)90275-8 CrossRefGoogle Scholar
  4. Baumann H, Talmage SC, Gobler CJ (2012) Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nat Clim Change 2:38–41. doi: 10.1038/nclimate1291 CrossRefGoogle Scholar
  5. Bégin C, Brooks G, Larson RA, Dragićević S, Ramos Scharrón CE, Côté IM (2014) Increased sediment loads over coral reefs in Saint Lucia in relation to land use change in contributing watersheds. Ocean Coast Manag 95:35–45. doi: 10.1016/j.ocecoaman.2014.03.018 CrossRefGoogle Scholar
  6. Bergenius MA, Meekan MG, Robertson RD, McCormick MI (2002) Larval growth predicts the recruitment success of a coral reef fish. Oecologia 131:521–525. doi: 10.1007/s00442-002-0918-4 CrossRefGoogle Scholar
  7. Briffa M, de la Haye K, Munday PL (2012) High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar Pollut Bull 64:1519–1528. doi: 10.1016/j.marpolbul.2012.05.032 PubMedCrossRefGoogle Scholar
  8. Cowen R, Paris C, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527PubMedCrossRefGoogle Scholar
  9. Cripps IL, Munday PL, McCormick MI (2011) Ocean acidification affects prey detection by a predatory reef fish. PLoS ONE 6:e22736. doi: 10.1371/journal.pone.0022736 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75. doi: 10.1111/j.1461-0248.2009.01400.x PubMedCrossRefGoogle Scholar
  11. Dixson DL, Abrego D, Hay ME (2014) Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science 345:892–897. doi: 10.1126/science.1255057 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Edinger EN, Risk MJ (2013) Effect of land-based pollution on central Java coral reefs. Coast Dev 3:593–613Google Scholar
  13. Erftemeijer PL, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Pollut Bull 64:1737–1765. doi: 10.1016/j.marpolbul.2012.05.008 PubMedCrossRefGoogle Scholar
  14. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146PubMedCrossRefGoogle Scholar
  15. Feary DA, Almany GR, McCormick MI, Jones GP (2007) Habitat choice, recruitment and the response of coral reef fishes to coral degradation. Oecologia 153:727–737. doi: 10.1007/s00442-007-0773-4 PubMedCrossRefGoogle Scholar
  16. Fiksen Ø, Aksnes DL, Flyum MH, Giske J (2002) The influence of turbidity on growth and survival of fish larvae: a numerical analysis. Sustainable increase of marine harvesting: fundamental mechanisms and new concepts. Springer, Berlin, pp 49–59Google Scholar
  17. Fisher HS, Wong BB, Rosenthal GG (2006) Alteration of the chemical environment disrupts communication in a freshwater fish. Proc R Soc B 273:1187–1193. doi: 10.1098/rspb.2005.3406 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Galloway TS et al (2004) Ecosystem management bioindicators: the ECOMAN project—a multi-biomarker approach to ecosystem management. Mar Environ Res 58:233–237. doi: 10.1016/j.marenvres.2004.03.064 PubMedCrossRefGoogle Scholar
  19. Gerlach G, Atema J, Kingsford MJ, Black KP, Miller-Sims V (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci USA 104:858–863. doi: 10.1073/pnas.0606777104 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Higashi T, Katayama TC, Shinagawa A (1985) Land development works and soil erosion in Okinawa Prefecture. Mem Kagoshima Univ Res Center S Pac 6:26–36Google Scholar
  21. Hughes TP, Graham NA, Jackson JB, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642. doi: 10.1016/j.tree.2010.07.011 PubMedCrossRefGoogle Scholar
  22. Jutfelt F, de Souza KB, Vuylsteke A, Sturve J (2013) Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8:e65825. doi: 10.1371/journal.pone.0065825 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kingsford MJ, Leis JM, Shanks A, Lindeman KC, Morgan SG, Pineda J (2002) Sensory environments, larval abilities and local self-recruitment. Bull Mar Sci 70:309–340Google Scholar
  24. Klaprat DA, Brown SB, Hara TJ (1988) The effect of low pH and aluminum on the olfactory organ or rainbow trout Salmo gairdneri. Environ Biol Fishes 22:69–78. doi: 10.1007/BF00000544 CrossRefGoogle Scholar
  25. Kombo MM, Vuai SA, Ishiki M, Tokuyama A (2005) Influence of salinity on pH and aluminum concentration on the interaction of acidic red soil with seawater. J Oceanogr 61:591–601. doi: 10.1007/s10872-005-0067-6 CrossRefGoogle Scholar
  26. Kroon FJ (2005) Behavioural avoidance of acidified water by juveniles of four commercial fish and prawn species with migratory life stages. Mar Ecol Prog Ser 285:193–204CrossRefGoogle Scholar
  27. Lecchini D, Osenberg CW, Shima JS, St Mary CM, Galzin G (2007) Ontogenetic changes in habitat selection during settlement in a coral reef fish: ecological determinants and sensory mechanisms. Coral Reefs 26:423–432. doi: 10.1007/s00338-007-0212-3 CrossRefGoogle Scholar
  28. Lecchini D, Waqalevu VP, Parmentier E, Radford CA, Banaigs B (2013) Fish larvae prefer coral over algal water cues: implications of coral reef degradation. Mar Ecol Prog Ser 475:303–307CrossRefGoogle Scholar
  29. Lecchini D, Miura T, Lecellier G, Banaigs B, Nakamura Y (2014a) Transmission distance of chemical cues from coral habitats: implications for marine larval settlement in context of reef degradation. Mar Biol 161:1677–1686CrossRefGoogle Scholar
  30. Lecchini D, Peyrusse K, Lanyon RG, Lecellier G (2014b) Importance of visual cues of conspecifics and predators during the habitat selection of coral reef fish larvae. C R Biol 337:345–351. doi: 10.1016/j.crvi.2014.03.007 PubMedCrossRefGoogle Scholar
  31. Leis JM, Yerman MN (2012) Behavior of larval butterflyfishes (Teleostei, Chaetodontidae) at settlement on coral reefs. Copeia 2012:212–222. doi: 10.1643/CE-10-185 CrossRefGoogle Scholar
  32. Leis JM, Carson-Ewart BM, Cato DH (2002) Sound detection in situ by the larvae of a coral-reef damselfish (Pomacentridae). Mar Ecol Prog Ser 232:259–268CrossRefGoogle Scholar
  33. Mkadam KM, Yonaha T, Ali VS, Tokuyama A (2006) Dissolved aluminum and silica release on the interaction of Okinawan subtropical red soil and seawater at different salinities: experimental and field observations. Geochem J 40:333–343. doi: 10.2343/geochemj.40.33 CrossRefGoogle Scholar
  34. Mora C et al (2011) Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol 9:e1000606. doi: 10.1371/journal.pbio.1000606 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Munday PL et al (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106:1848–1852. doi: 10.1073/pnas.0809996106 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Munday PL et al (2013) Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Mar Biol 160:2137–2144. doi: 10.1007/s00227-012-2111-6 CrossRefGoogle Scholar
  37. Nakamura Y, Shibuno T, Lecchini D, Kawamura T, Watanabe Y (2009) Spatial variability in habitat associations of pre- and post-settlement stages of coral reef fishes at Ishigaki Island, Japan. Mar Biol 156:2413–2419. doi: 10.1007/s00227-009-1257-3 CrossRefGoogle Scholar
  38. Nanami A, Nishihira M (2002) The structures and dynamics of fish communities in an Okinawan coral reef: effects of coral-based habitat structures at sites with rocky and sandy sea bottoms. Environ Biol Fishes 63:353–372CrossRefGoogle Scholar
  39. Nilsson GE et al (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Change 2:201–204. doi: 10.1038/nclimate1352 CrossRefGoogle Scholar
  40. Okinawa Prefecture (1993) Survey report on the state of red soil pollution and its damage. Department of Health and Environment Okinawa, Naha, p 204Google Scholar
  41. Omori M (2011) Degradation and restoration of coral reefs: experience in Okinawa, Japan. Mar Biol Res 7:3–12. doi: 10.1080/17451001003642317 CrossRefGoogle Scholar
  42. Powell B, Martens M (2005) A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity. Mar Pollut Bull 51:149–164. doi: 10.1016/j.marpolbul.2004.10.047 PubMedCrossRefGoogle Scholar
  43. Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392. doi: 10.1016/j.aquatox.2004.03.016 PubMedCrossRefGoogle Scholar
  44. Shima JS, Findlay AM (2002) Pelagic larval growth rate impacts benthic settlement and survival of a temperate reef fish. Mar Ecol Prog Ser 235:303–309CrossRefGoogle Scholar
  45. Siebeck UE, O’Connor J, Braun C, Leis JM (2015) Do human activities influence survival and orientation abilities of larval fishes in the ocean? Integr Zool 10:65–82. doi: 10.1111/1749-4877.12096
  46. Thorrold SR, Milicich MJ (1990) Comparison of larval duration and pre- and post-settlement growth in two species of damselfish, Chromis atripectoralis and Pomacentrus coelestis (Pisces: Pomacentridae) from the Great Barrier Reef. Mar Biol 105:375–384. doi: 10.1007/BF01316308 CrossRefGoogle Scholar
  47. Torres JL, Morelock J (2002) Effect of terrigenous sediment influx on coral cover and linear extension rates of three Caribbean massive coral species. Caribb J Sci 38:222–229Google Scholar
  48. Ward AJ, Duff AJ, Horsfall JS, Currie S (2008) Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proc R Soc B 275:101–105. doi: 10.1098/rspb.2007.1283 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Weber M et al (2012) Mechanisms of damage to corals exposed to sedimentation. Proc Natl Acad Sci USA 109:E1558–E1567. doi: 10.1073/pnas.1100715109 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Wenger AS, McCormick MI (2013) Determining trigger values of suspended sediment for behavioral changes in a coral reef fish. Mar Pollut Bull 70:73–80. doi: 10.1016/j.marpolbul.2013.02.014 PubMedCrossRefGoogle Scholar
  51. Wenger AS, Johansen J, Jones G (2011) Suspended sediment impairs habitat choice and chemosensory discrimination in two coral reef fishes. Coral Reefs 30:879–887. doi: 10.1007/s00338-011-0773-z CrossRefGoogle Scholar
  52. Wenger AS, Johansen JL, Jones GP (2012) Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish. J Exp Mar Biol Ecol 428:43–48. doi: 10.1016/j.jembe.2012.06.004 CrossRefGoogle Scholar
  53. Wenger A, McCormick M, McLeod I, Jones G (2013) Suspended sediment alters predator–prey interactions between two coral reef fishes. Coral Reefs 32:369–374. doi: 10.1007/s00338-012-0991-z CrossRefGoogle Scholar
  54. Wenger A, McCormick M, Endo G, McLeod I, Kroon F, Jones G (2014) Suspended sediment prolongs larval development in a coral reef fish. J Exp Biol 217:1122–1128. doi: 10.1242/jeb.094409
  55. Wong CK, Pak IAP, Jiang Liu X (2013) Gill damage to juvenile orange-spotted grouper Epinephelus coioides (Hamilton, 1822) following exposure to suspended sediments. Aquac Res 44:1685–1695. doi: 10.1111/j.1365-2109.2012.03173.x Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. Jack O’Connor
    • 1
    • 2
  • David Lecchini
    • 3
    • 4
  • Hayden J. Beck
    • 1
  • Gwenael Cadiou
    • 1
  • Gael Lecellier
    • 3
    • 5
  • David J. Booth
    • 1
  • Yohei Nakamura
    • 6
  1. 1.School of Life SciencesUniversity of Technology SydneyUltimoAustralia
  2. 2.IchthyologyAustralian MuseumSydneyAustralia
  3. 3.Laboratoire d’Excellence “CORAIL”MooreaFrench Polynesia
  4. 4.USR 3278 CNRS-EPHE-UPVDCRIOBEPapetoai, MooreaFrench Polynesia
  5. 5.Université de VersaillesSaint Quentin En YvelinesFrance
  6. 6.Graduate School of Kuroshio ScienceKochi UniversityNankokuJapan

Personalised recommendations