Skip to main content

Age-dependent survival of island vs. mainland populations of two avian scavengers: delving into migration costs

Abstract

Large terrestrial long-lived birds (including raptors) are typically sedentary on islands, even when they are migratory on the mainland. Density-dependent variation in the age at first breeding has been described as responsible for the long-term persistence of long-lived bird populations on islands. However, sedentary island populations may also benefit from higher survival rates derived from the absence of migration costs, especially for young individuals. Thus, sedentary island populations can mimic a natural experiment to study migration costs. We estimated the age-dependent survival of two sedentary raptors on the island of Menorca (Egyptian vultures Neophron percnopterus and red kites Milvus milvus) and compared these estimates with those reported for other migratory and sedentary populations. In Menorca, Egyptian vultures, but not red kites, showed low levels of human-related mortality resulting in extremely high survival probabilities, probably due to different diet choices and behavioral patterns. Juvenile Egyptian vultures and red kites in the studied population had lower survival probabilities than adults. This difference, however, was smaller than those reported for mainland migrant populations, which showed a lower juvenile survival rate. In fact, between-population comparisons suggested that survival of the young in migrant populations may be triggered by mortality factors in wintering areas. In contrast, adult survival may respond to mortality factors in breeding areas. Our results suggest that raptor species that become sedentary on islands may benefit from higher pre-breeder survival prospects in comparison with their mainland migrant counterparts. This fact, in combination with an earlier age at first reproduction, may facilitate their persistence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Agudo R, Carrete M, Alcaide M, Rico C, Hiraldo F, Donázar JA (2012) Genetic diversity at neutral and adaptive loci determines individual fitness in a long-lived territorial bird. Proc R Soc B Biol Sci 279:3241–3249

    Article  Google Scholar 

  • Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260

    Article  Google Scholar 

  • Bannerman DA, Bannerman WM, Reid-Henry DM (1968) Birds of the Atlantic islands. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Bellebaum J, Korner-Nievergelt F, Dürr T, Mammen U (2013) Wind turbine fatalities approach a level of concern in a raptor population. J Nat Conserv 21:394–400

    Article  Google Scholar 

  • Berthold P (2001) Bird migration: a general survey. Oxford University Press, Oxford

    Google Scholar 

  • BirdLife International (2014) IUCN red list for birds. http://www.iucn.org/

  • Blondel J, Pradel R, Lebreton J-D (1992) Low fecundity insular blue tits do not survive better as adults than high fecundity mainland ones. J Anim Ecol 61:205–213

    Article  Google Scholar 

  • Boyer AG (2010) Consistent ecological selectivity through time in Pacific island avian extinctions. Conserv Biol 24:511–519

    Article  PubMed  Google Scholar 

  • Brouwer L, Tinbergen JM, Both C, Bristol R, Richardson DS, Komdeur J (2009) Experimental evidence for density-dependent reproduction in a cooperatively breeding passerine. Ecology 90:729–741

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Carrete M, Sánchez-Zapata JA, Benítez JR, Lobón M, Donázar JA (2009) Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol Conserv 142:2954–2961

    Article  Google Scholar 

  • Carrete M, Bortolotti GR, Sánchez-Zapata JA, Delgado A, Cortés-Avizanda A, Grande JM, Donázar J (2013) Stressful conditions experienced by endangered Egyptian vultures on African wintering areas. Anim Conserv 16:353–358

    Article  Google Scholar 

  • Choquet R, Lebreton J, Gimenez O, Reboulet AM, Pradel R (2009a) U-CARE: utilities for performing goodness of fit tests and manipulating Capture–REcapture data. Ecography 32:1071–1074

    Article  Google Scholar 

  • Choquet R, Rouan L, Pradel R (2009b) Program E-SURGE: a software application for fitting multievent models. In: Cooch E, Conroy M, Thomson D (eds) Modeling demographic processes in marked populations. Springer, Berlin, pp 845–865

    Chapter  Google Scholar 

  • Congost J, Muntaner J (1974) Presencia otoñal e invernal y concentración de Neophron percnopterus en la isla de Menorca. Misc Zool 3:151–161

    Google Scholar 

  • Cortés-Avizanda A, Ceballos O, Donázar J (2009) Long-term trends in population size and breeding success in the Egyptian vulture (Neophron percnopterus) in Northern Spain. J Raptor Res 43:43–49

    Article  Google Scholar 

  • Cramp S, Simmons K (1977) Birds of the western Palearctic: handbook of the birds of Europe, the Middle East and North Africa. Oxford University Press, Oxford

    Google Scholar 

  • De Pablo F (2002) La situación del alimoche, Neophron percnopterus, en las Islas Baleares. Anu Ornitol Balear 17:53–57

    Google Scholar 

  • De Pablo F (2004) Bases Ecológicas para la elaboración de un plan de recuperación de la población de milanos reales, Milvus milvus. PhD dissertation, Universidad de Barcelona, Barcelona

  • Donázar J (1993) The Iberian vultures. Biology and conservation. Reyero, Madrid

    Google Scholar 

  • Donázar JA, Ceballos O, Tella JL (1996) Communal roosts of Egyptian vultures (Neophron percnopterus): dynamics and implications for the species conservation. In: Muntaner J, Mayol J (eds) Biologı́a y Conservación de las Rapaces Mediterráneas, 1994 (Monografı́as no 4), SEO, pp 189–202

  • Donázar JA, Palacios CJ, Gangoso L, Ceballos O, González MJ, Hiraldo F (2002) Conservation status and limiting factors in the endangered population of Egyptian vulture (Neophron percnopterus) in the Canary Islands. Biol Conserv 107:89–97

    Article  Google Scholar 

  • Donázar JA, Gangoso L, Forero MG, Juste J (2005) Presence, richness and extinction of birds of prey in the Mediterranean and Macaronesian islands. J Biogeogr 32:1701–1713

    Article  Google Scholar 

  • Ferrer M, Otalora F, García-Ruiz JM (2004) Density-dependent age of first reproduction as a buffer affecting persistence of small populations. Ecol Appl 14:616–624

    Article  Google Scholar 

  • Ferrer M, Bildstein K, Penteriani V, Casado E, de Lucas M (2011) Why birds with deferred sexual maturity are sedentary on islands: a systematic review. PLoS One 6:e22056

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Forero MG, Donázar JA, Blas J, Hiraldo F (1999) Causes and consequences of territory change and breeding dispersal distance in the black kite. Ecology 80:1298–1310

    Article  Google Scholar 

  • Forslund P, Pärt T (1995) Age and reproduction in birds-hypotheses and tests. Trends Ecol Evol 10:374–378

    CAS  Article  PubMed  Google Scholar 

  • Gangoso L, Agudo R, Anadón JD, de la Riva M, Suleyman AS, Porter R, Donázar JA (2013) Reinventing mutualism between humans and wild fauna: insights from vultures as ecosystem services providers. Conserv Lett 6:172–179

    Article  Google Scholar 

  • Grande JM, Serrano D, Tavecchia G, Ceballos O, Díaz-Delgado R, Tella JL, Donázar JA (2009) Survival in a long-lived territorial migrant: effects of life-history traits and ecological conditions in wintering and breeding areas. Oikos 118:580–590

    Article  Google Scholar 

  • Greig S, Coulson J, Monaghan P (1983) Age-related differences in foraging success in the herring gull (Larus argentatus). Anim Behav 31:1237–1243

    Article  Google Scholar 

  • Hernández M, Margalida A (2009) Poison-related mortality effects in the endangered Egyptian vulture (Neophron percnopterus) population in Spain. Eur J Wildl Res 55:415–423

    Article  Google Scholar 

  • Kéry M, Schaub M (2012) Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic Press, Dublin

    Google Scholar 

  • Klaassen RH, Hake M, Strandberg R, Koks BJ, Trierweiler C, Exo KM, Bairlein F, Alerstam T (2014) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol 83:176–184

    Article  PubMed  Google Scholar 

  • Knott J, Newbery P, Barov B (2009) Action plan for the red kite Milvus milvus in the European Union, p. 55. http://ec.europa.eu/environment/nature/conservation/wildbirds/action_plans/docs/milvus_milvus.pdf

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

    CAS  Article  PubMed  Google Scholar 

  • Lok T, Overdijk O, Piersma T (2013) Migration tendency delays distributional response to differential survival prospects along a flyway. Am Nat 181:520–531

    Article  PubMed  Google Scholar 

  • López-López P, García-Ripollés C, Urios V (2013) Food predictability determines space use of endangered vultures: implications for management of supplementary feeding. Ecol Appl 24:938–949

    Article  Google Scholar 

  • López-López P, García-Ripollés C, Urios V (2014) Individual repeatability in timing and spatial flexibility of migration routes of trans-Saharan migratory raptors. Curr Zool 60:642–652

    Google Scholar 

  • Mihoub J-B, Gimenez O, Pilard P, Sarrazin F (2010) Challenging conservation of migratory species: Sahelian rainfalls drive first-year survival of the vulnerable lesser kestrel Falco naumanni. Biol Conserv 143:839–847

    Article  Google Scholar 

  • Morris WF, Doak DF (2002) Quantitative conservation biology. Sinauer, Sunderland

    Google Scholar 

  • Newton I (1989) Lifetime reproduction in birds. Academic Press, London

    Google Scholar 

  • Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166

    Article  Google Scholar 

  • Newton I, Davis PE, Davis JE (1989) Age of first breeding, dispersal and survival of red kites Milvus milvus in Wales. Ibis 131:16–21

    Article  Google Scholar 

  • Oro D, Margalida A, Carrete M, Heredia R, Donazar JA (2008) Testing the goodness of supplementary feeding to enhance population viability in an endangered vulture. PLoS One 3:e4084

    PubMed Central  Article  PubMed  Google Scholar 

  • Oro D, Genovart M, Tavecchia G, Fowler MS, Martínez-Abraín A (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16:1501–1514

    Article  PubMed  Google Scholar 

  • Owens IPF, Bennett PM (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc Natl Acad Sci USA 97:12144–12148

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Pradel R (2005) Multievent: an extension of multistate capture–recapture models to uncertain states. Biometrics 61:442–447

    Article  PubMed  Google Scholar 

  • Pradel R, Gimenez O, Lebreton J (2005) Principles and interest of GOF tests for multistate capture–recapture models. Anim Biodivers Conserv 28:189–204

    Google Scholar 

  • Sæther B-E, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653

    Article  Google Scholar 

  • Sanz-Aguilar A, Bechet A, Germain C, Johnson AR, Pradel R (2012) To leave or not to leave: survival trade-offs between different migratory strategies in the greater flamingo. J Anim Ecol 81:1171–1182

    Article  PubMed  Google Scholar 

  • Sanz-Aguilar A, Tavecchia G, Afán I, Ramírez F, Doxa A, Bertolero A, Gutiérrez-Expósito C, Forero MG, Oro D (2014) Living on the edge: demography of the slender-billed gull in the Western Mediterranean. PLoS One 9:e92674

    PubMed Central  Article  PubMed  Google Scholar 

  • Sanz-Aguilar A, Sánchez-Zapata JA, Carrete M, Benítez JR, Ávila E, Arenas R, Donázar JA (2015) Action on multiple fronts, illegal poisoning and wind farm planning, is required to reverse the decline of the Egyptian vulture in Southern Spain. Biol Conserv 187:10–18

    Article  Google Scholar 

  • Sarrazin F, Bagnolini C, Pinna JL, Danchin E, Clobert J (1994) High survival estimates of griffon vultures (Gyps fulvus fulvus) in a reintroduced population. Auk 111:853–862

    Article  Google Scholar 

  • Schaub M (2012) Spatial distribution of wind turbines is crucial for the survival of red kite populations. Biol Conserv 155:111–118

    Article  Google Scholar 

  • Schaub M, Pradel R, Lebreton J-D (2004) Is the reintroduced white stork (Ciconia ciconia) population in Switzerland self-sustainable? Biol Conserv 119:105–114

    Article  Google Scholar 

  • Schaub M, Kania W, Köppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J Anim Ecol 74:656–666

    Article  Google Scholar 

  • Sergio F, Tavecchia G, Blas J, López L, Tanferna A, Hiraldo F (2011) Variation in age-structured vital rates of a long-lived raptor: implications for population growth. Basic Appl Ecol 12:107–115

    Article  Google Scholar 

  • Sergio F, Tanferna A, De Stephanis R, López-Jiménez L, Blas J, Tavecchia G, Preatoni D, Hiraldo F (2014) Individual improvements and selective mortality shape lifelong migratory performance. Nature 515:410–413

    CAS  Article  PubMed  Google Scholar 

  • Smart J, Amar A, Sim IM, Etheridge B, Cameron D, Christie G, Wilson JD (2010) Illegal killing slows population recovery of a re-introduced raptor of high conservation concern–the red kite Milvus milvus. Biol Conserv 143:1278–1286

    Article  Google Scholar 

  • Tavecchia G, Adrover J, Navarro AM, Pradel R (2012) Modelling mortality causes in longitudinal data in the presence of tag loss: application to raptor poisoning and electrocution. J Appl Ecol 49:297–305

    Article  Google Scholar 

  • Tenan S, Adrover J, Navarro AM, Sergio F, Tavecchia G (2012) Demographic consequences of poison-related mortality in a threatened bird of prey. PLoS One 7:e49187

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Walter HS (1990) Small viable population: the red-tailed hawk of Socorro Island. Conserv Biol 4:441–443

    Article  Google Scholar 

  • Warkentin IG, James PC, Oliphant LW (1990) Body morphometrics, age structure, and partial migration of urban merlins. Auk 107:25–34

    Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139

    Article  Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We are grateful to Giacomo Tavecchia for his statistical advice and comments. This work was partially funded by projects JCI-2011-09085, CGL2012-40013-C02-01-02, a Severo Ochoa Excellence Award (SEV-2012-0262) from the Ministerio de Economía y Competitividad of the Spanish Government and EU FEDER funds. The Regional Government of the Balearic Islands provided permits to capture birds and financed part of the work.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Sanz-Aguilar.

Additional information

Communicated by Scott McWilliams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanz-Aguilar, A., De Pablo, F. & Donázar, J.A. Age-dependent survival of island vs. mainland populations of two avian scavengers: delving into migration costs. Oecologia 179, 405–414 (2015). https://doi.org/10.1007/s00442-015-3355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3355-x

Keywords

  • Neophron percnopterus
  • Milvus milvus
  • Multievent
  • Radiotracking
  • Demography