Skip to main content
Log in

Contrasting effects of plant species traits and moisture on the decomposition of multiple litter fractions

  • Ecosystem ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Environmental variation in moisture directly influences plant litter decomposition through effects on microbial activity, and indirectly via plant species traits. Whether the effects of moisture and plant species traits are mutually reinforcing or counteracting during decomposition are unknown. To disentangle the effects of moisture from the effects of species traits that vary with moisture, we decomposed leaf litter from 12 plant species in the willow family (Salicaceae) with different native habitat moisture preferences in paired mesic and wetland plots. We fit litter mass loss data to an exponential decomposition model and estimated the decay rate of the rapidly cycling litter fraction and size of the remaining fraction that decays at a rate approaching zero. Litter traits that covaried with moisture in the species’ native habitat significantly influenced the decomposition rate of the rapidly cycling litter fraction, but moisture in the decomposition environment did not. In contrast, for the slowly cycling litter fraction, litter traits that did not covary with moisture in the species’ native habitat and moisture in the decomposition environment were significant. Overall, the effects of moisture and plant species traits on litter decomposition were somewhat reinforcing along a hydrologic gradient that spanned mesic upland to wetland (but not permanently surface-saturated) plots. In this system, plant trait and moisture effects may lead to greater in situ decomposition rates of wetland species compared to upland species; however, plant traits that do not covary with moisture will also influence decomposition of the slowest cycling litter fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerly DD, Reich PB (1999) Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am J Bot 86:1272–1281

    Article  CAS  PubMed  Google Scholar 

  • Adair EC, Parton WJ, Del Grosso SJ et al (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Change Biol. doi:10.1111/j.1365-2486.2008.01674.x

    Google Scholar 

  • Adair EC, Hobbie SE, Hobbie RK (2010) Single-pool exponential decomposition models: potential pitfalls in their use in ecological studies. Ecology 91:1225–1236

    Article  PubMed  Google Scholar 

  • Aerts R, Chapin III FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

  • Austin AT, Vitousek PM (2000) Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. J Ecol 88:129–138. doi:10.1046/j.1365-2745.2000.00437.x

    Article  Google Scholar 

  • Berg B (2000) Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands. Can J For Res 30:122–135. doi:10.1139/x99-194

    Article  CAS  Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest. VII. Can J Bot 69:1449–1456. doi:10.1139/b91-187

    Article  Google Scholar 

  • Berg B, McClaugherty C (2007) Plant litter: decomposition, humus formation, carbon sequestration. Springer Verlag, Heidelberg, Berlin

    Google Scholar 

  • Boulton A, Boon P (1991) A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Mar Freshw Res 42:1–43

    Article  CAS  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC et al (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24:891–899. doi:10.1093/treephys/24.8.891

    Article  CAS  PubMed  Google Scholar 

  • Cavender-Bares J, Kitajima K, Bazzaz FA (2004) Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol Monogr 74:635–662

    Article  Google Scholar 

  • Chamier A-C (1987) Effect of pH on microbial degradation of leaf litter in seven streams of the English Lake District. Oecologia 71:491–500. doi:10.1007/BF00379287

    Article  Google Scholar 

  • Clarkson BR, Moore TR, Fitzgerald NB et al (2014) Water table regime regulates litter decomposition in restiad peatlands, New Zealand. Ecosystems 17:317–326. doi:10.1007/s10021-013-9726-4

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Quested HM, Gwynn-Jones D et al (2004) Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct Ecol 18:779–786. doi:10.1111/j.0269-8463.2004.00900.x

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • DeMott WR, Gulati RD, Siewertsen K (1998) Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43:1147–1161

    Article  CAS  Google Scholar 

  • Driebe EM, Whitham TG (2000) Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition. Oecologia 123:99–107

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631. doi:10.1073/pnas.0507535103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grigal DF, Homann PS (1994) Nitrogen mineralization, groundwater dynamics, and forest growth on a Minnesota outwash landscape. Biogeochemistry 27:171–185

    Article  Google Scholar 

  • Hobbie SE, Eddy WC, Buyarski CR et al (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol Monogr 82:389–405. doi:10.1890/11-1600.1

    Article  Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164. doi:10.2307/3235676

    Article  Google Scholar 

  • LeRoy CJ, Whitham TG, Keim P, Marks JC (2006) Plant genes link forests and streams. Ecology 87:255–261. doi:10.1890/05-0159

    Article  PubMed  Google Scholar 

  • Parton W, Silver WL, Burke IC et al (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364. doi:10.1126/science.1134853

    Article  CAS  PubMed  Google Scholar 

  • Porter LJ, Hrstich LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230

    Article  CAS  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB et al (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Article  Google Scholar 

  • Savage JA (2010) An ecological and evolutionary perspective on functional diversity in the genus Salix. PhD dissertation, University of Minnesota, Saint Paul

  • Savage JA, Cavender-Bares JM (2011) Contrasting drought survival strategies of sympatric willows (genus: Salix): consequences for coexistence and habitat specialization. Tree Physiol 31:604–614

    Article  PubMed  Google Scholar 

  • Savage JA, Cavender-Bares J (2012) Habitat specialization and the role of trait lability in structuring diverse willow (genus Salix) communities. Ecology 93:S138–S150. doi:10.1890/11-0406.1

    Article  Google Scholar 

  • Savage JA, Cavender-Bares J (2013) Phenological cues drive an apparent trade-off between freezing tolerance and growth in the family Salicaceae. Ecology 94:1708–1717. doi:10.1890/12-1779.1

    Article  PubMed  Google Scholar 

  • Savage JA, Cavender-Bares J, Verhoeven A (2009) Willow species (genus: Salix) with contrasting habitat affinities differ in their photoprotective responses to water stress. Funct Plant Biol 36:300–309

    Article  Google Scholar 

  • Schuur EAG (2001) The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests. Ecosystems 4:259–273. doi:10.1007/s10021-001-0008-1

    Article  CAS  Google Scholar 

  • Schweitzer JA, Bailey JK, Rehill BJ et al (2004) Genetically based trait in a dominant tree affects ecosystem processes. Ecol Lett 7:127–134

    Article  Google Scholar 

  • Schweitzer JA, Madritch MD, Bailey JK et al (2008) From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11:1005–1020. doi:10.1007/s10021-008-9173-9

    Article  CAS  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542. doi:10.1016/S1360-1385(00)01797-0

    Article  CAS  PubMed  Google Scholar 

  • Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211. doi:10.1016/j.soilbio.2010.03.017

    Article  CAS  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763. doi:10.1111/j.1469-8137.2007.02275.x

    Article  PubMed  Google Scholar 

  • Weiher E, Freund D, Bunton T et al (2011) Advances, challenges and a developing synthesis of ecological community assembly theory. Philos Trans R Soc Lond B 366:2403–2413. doi:10.1098/rstb.2011.0056

    Article  Google Scholar 

  • Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642. doi:10.2307/1940104

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chris Buyarski, Carrie Gahr, MacKenzie Kelly, Michael Kempnich, Katie Kemmitt, Christine O’Connell, Kristen Peterson, Kristen Ross, Kelsey Thurow, and Michael Wells for assistance in the field and laboratory, and anonymous reviewers for comments on a previous draft of this manuscript. This material is based upon work supported by the Cedar Creek Long Term Ecological Research Program (NSF DEB-1234162), the National Science Foundation Graduate Research Fellowship under Grant No. 00039202, and the Florence Rothman Fellowship Fund in the University of Minnesota’s College of Biological Studies.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte E. Riggs.

Additional information

Communicated by Jason P. Kaye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riggs, C.E., Hobbie, S.E., Cavender-Bares, J. et al. Contrasting effects of plant species traits and moisture on the decomposition of multiple litter fractions. Oecologia 179, 573–584 (2015). https://doi.org/10.1007/s00442-015-3352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3352-0

Keywords

Navigation