Skip to main content

Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?

Abstract

Anthropogenic land use may shape vegetation composition and affect trophic interactions by altering concentrations of host plant metabolites. Here, we investigated the hypotheses that: (1) plant N and defensive secondary metabolite contents of the herb Plantago lanceolata are affected by land use intensity (LUI) and the surrounding vegetation composition (=plant species richness and P. lanceolata density), and that (2) changes in plant chemistry affect abundances of the herbivorous weevils Mecinus pascuorum and Mecinus labilis, as well as their larval parasitoid Mesopolobus incultus, in the field. We determined plant species richness, P. lanceolata density, and abundances of the herbivores and the parasitoid in 77 grassland plots differing in LUI index in three regions across Germany. We also measured the N and secondary metabolite [the iridoid glycosides (IGs) aucubin and catalpol] contents of P. lanceolata leaves. Mixed-model analysis revealed that: (1) concentrations of leaf IGs were positively correlated with plant species richness; leaf N content was positively correlated with the LUI index. Furthermore: (2) herbivore abundance was not related to IG concentrations, but correlated negatively with leaf N content. Parasitoid abundance correlated positively only with host abundance over the three regions. Structural equation models revealed a positive impact of IG concentrations on parasitoid abundance in one region. We conclude that changes in plant chemistry due to land use and/or vegetation composition may affect higher trophic levels and that the manifestation of these effects may depend on local biotic or abiotic features of the landscape.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Adam G, Khoi NH, Bergner C, Liens NT (1979) Plant growth inhibiting properties of plumieride from Plumeria obtusifolia. Phytochemistry 18:1399–1400. doi:10.1016/0031-9422(79)83035-6

    CAS  Article  Google Scholar 

  • Agrawal AA (2004) Resistance and susceptibility of milkweed: competition, root herbivory, and plant genetic variation. Ecology 85:2118–2133. doi:10.1890/03-4084

    Article  Google Scholar 

  • Baden CU, Franke S, Dobler S (2012) Differing patterns of sequestration of iridoid glycosides in the Mecininae (Coleoptera, Curculionidae). Chemoecology 22:113–118. doi:10.1007/s00049-012-0103-0

    CAS  Article  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi:10.1111/j.1461-0248.2006.00963.x

    Article  PubMed  Google Scholar 

  • Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1–20. doi:10.1103/PhysRevB.85.134407

    Article  Google Scholar 

  • Barton KE, Bowers MD (2006) Neighbor species differentially alter resistance phenotypes in Plantago. Oecologia 150:442–452. doi:10.1007/s00442-006-0531-z

    Article  PubMed  Google Scholar 

  • Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892. doi:10.2307/1941237

    Article  Google Scholar 

  • Blüthgen N, Dormann CF, Prati D, Klaus V, Kleinebecker T, Hölzl N, Alt F, Boch S, Gockel S, Hemp A, Müller J, Nieschulze J, Renner SC, Schöning I, Schumacher U, Socher SA, Wells K, Birkhofer K, Buscot F, Oelmann Y, Rothenwöhrer C, Scherber C, Tscharntke T, Weiner CN, Fischer M, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220. doi:10.1016/j.baae.2012.04.001

    Article  Google Scholar 

  • Bowers MD (1991) Iridoid glycosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic Press, San Diego, pp 297–326

    Chapter  Google Scholar 

  • Bowers MD, Stamp NE (1992) Chemical variation within and between individuals of Plantago lanceolata (Plantaginaceae). J Chem Ecol 18:985–995. doi:10.1007/BF00980057

    CAS  Article  PubMed  Google Scholar 

  • Bowers MD, Stamp NE (1993) Effect of plant age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74:1778–1791. doi:10.2307/1939936

    Article  Google Scholar 

  • Brodbeck BV, Mizzel RF, French WJ, Anderson PC, Aldrich JH (1990) Amino acids as determinants of host preference for the xylem feeding leafhopper, Homalodisca coagulate (Homoptera: Cicadellidae). Oecologia 83:338–345. doi:10.1007/BF00317557

    Article  Google Scholar 

  • Broz AK, Broeckling CD, De-la-Peña C, Lewis MR, Greene E, Callaway RM, Sumner LW, Vivanco JM (2010) Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol 10:115. doi:10.1186/1471-2229-10-115

    PubMed Central  Article  PubMed  Google Scholar 

  • Bukovinszky T, Poelman EH, Gols R, Prekatsakis G, Vet LEM, Harvey JA, Dicke M (2009) Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia 160:299–308. doi:10.1007/s00442-009-1308-y

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Cease AJ, Elser JJ, Fored CF, Hao S, Kang L, Harrison JF (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335:467–469. doi:10.1126/science.1214433

    CAS  Article  PubMed  Google Scholar 

  • Chin WW, Newsted PR (1999) Structural equation modeling analysis with small samples using partial least squares. Statistical strategies for small sample research. In: Hoyle R (ed) Statistical strategies for small sample research. Sage, Thousand Oaks, pp 307–341

    Google Scholar 

  • Cipollini DF, Bergelson J (2001) Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. J Chem Ecol 27:593–610. doi:10.1023/A:1010384805014

    CAS  Article  PubMed  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Darrow K, Bowers MD (1999) Effects of herbivore damage and nutrient level on induction of iridoid glycosides in Plantago lanceolata. J Chem Ecol 25:1427–1440. doi:10.1023/A:1020991229072

    CAS  Article  Google Scholar 

  • De Deyn GB, Biere A, van der Putten WH, Wagenaar R, Klironomos JN (2009) Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L. Oecologia 160:433–442. doi:10.1007/s00442-009-1312-2

    Article  PubMed  Google Scholar 

  • Dicke M, van Poecke RMP (2002) Signalling in plant-insect interactions: signal transduction in direct and indirect plant defence. In: Scheel D, Wasternack C (eds) Plant signal transduction. University Press, Oxford, pp 289–316

    Google Scholar 

  • Dobler S, Petschenka G, Pankoke H (2011) Coping with toxic plant compounds—the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72:1593–1604. doi:10.1016/j.phytochem.2011.04.015

    CAS  Article  PubMed  Google Scholar 

  • Elston DA, Moss R, Boulinier T, Arrowsmith C, Lambin X (2001) Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks. Parasitology 122:563–569

    CAS  Article  PubMed  Google Scholar 

  • Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia 124:235–241. doi:10.1007/s004420000365

    Article  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485. doi:10.1016/j.baae.2010.07.009

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Stuart Chapin F, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Colin Prentice I, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    CAS  Article  PubMed  Google Scholar 

  • Freude H, Harde KW, Lohse GA (1983) Die Käfer Mitteleuropas, vol 11. Goecke and Evers, Krefeld

    Google Scholar 

  • Gols R, Harvey JA (2009) Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem Rev 8:187–206. doi:10.1007/s11101-008-9104-6

    CAS  Article  Google Scholar 

  • Gols R, van Dam NM, Raaijmakers CE, Dicke M, Harvey JA (2009) Are population differences in plant quality reflected in the preference and performance of two endoparasitoid wasps? Oikos 118:733–743. doi:10.1111/j.1600-0706.2008.17231.x

    Article  Google Scholar 

  • Hancock C, Wäschke N, Schumacher U, Linsenmair KE, Meiners T, Obermaier E (2013) Fertilizer application decreases insect abundance on Plantago lanceolata—a large scale experiment in three geographic regions. Arthropod Plant Interact 7:147–158. doi:10.1007/s11829-012-9237-9

    Article  Google Scholar 

  • Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144. doi:10.1016/j.tree.2009.09.010

    Article  PubMed  Google Scholar 

  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398. doi:10.4039/Ent91385-7

    Article  Google Scholar 

  • Joern A, Behmer ST (1998) Impact of diet quality on demographic attributes in adult grasshoppers and the nitrogen limitation hypothesis. Ecol Entomol 23:174–184. doi:10.1046/j.1365-2311.1998.00112.x

    Article  Google Scholar 

  • Joshi J, Otway SJ, Koricheva J, Pfisterer AB, Alphei J, Roy BA, Scherer-Lorenzen M, Schmid B, Spehn EM, Hector A (2004) Bottom-up effects and feedbacks in simple and diverse experimental grassland communities. In: Weisser WW, Siemann E (eds) Insects and ecosystem function. Springer, Berlin, pp 115–134

    Chapter  Google Scholar 

  • Kegge W, Pierik R (2010) Biogenic volatile organic compounds and plant competition. Trends Plant Sci 15:126–132. doi:10.1016/j.tplants.2009.11.007

    CAS  Article  PubMed  Google Scholar 

  • Kock N (2010) Using WarpPLS in e-collaboration studies: an overview of five main analysis steps. Int J e-Collab 6:1–11. doi:10.4018/jec.2010100101

    Article  Google Scholar 

  • Kock N (2012) WarpPLS 3.0 user manual. ScriptWarp Systems, Laredo

    Google Scholar 

  • Kos M, Broekgaarden C, Kabouw P, Lenferink KO, Poelman EH, Vet LEM, Dicke M, van Loon JJA (2011) Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea. Funct Ecol 25:1113–1124. doi:10.1111/j.1365-2435.2011.01871

    Article  Google Scholar 

  • Lampert EC, Dyer LA, Bowers MD (2010) Caterpillar chemical defense and parasitoid success: Cotesia congregata parasitism of Ceratomia catalpae. J Chem Ecol 36:992–998. doi:10.1007/s10886-010-9840-0

    CAS  Article  PubMed  Google Scholar 

  • Marak HB, Biere A, Van Damme JMM (2000) Direct and correlated responses to selection on iridoid glycosides in Plantago lanceolata L. J Evol Biol 13:985–996. doi:10.1046/j.1420-9101.2000.00233.x

    CAS  Article  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161. doi:10.1146/annurev.es.11.110180.001003

    Article  Google Scholar 

  • Mohd Norowi H, Perry JN, Powell W, Rennolls K (2000) The effect of spatial scale on interactions between two weevils and their parasitoid. Ecol Entomol 25:188–196. doi:10.1046/j.1365-2311.2000.00242.x

    Article  Google Scholar 

  • Mraja A, Unsicker SB, Reichelt M, Gershenzon J, Roscher C (2011) Plant community diversity influences allocation to direct chemical defence in Plantago lanceolata. PLoS One 6(12):e28055. doi:10.1371/journal.pone.0028055

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185. doi:10.1146/annurev.ento.51.110104.151110

    CAS  Article  PubMed  Google Scholar 

  • Opitz SEW, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154. doi:10.1007/s00049-009-0018-6

    CAS  Article  Google Scholar 

  • Page JE, Madriñán S, Towers GHN (1994) Identification of a plant growth inhibiting iridoid lactone from Duroia hirsuta, the allelopathic tree of the Devil’s garden. Experientia 50:840–842. doi:10.1007/BF01956467

    CAS  Article  Google Scholar 

  • Pardo F, Perich F, Torres R, Delle Monache F (1998) Phytotoxic iridoid glucosides from the roots of Verbascum thapsus. J Chem Ecol 24:645–653. doi:10.1023/A:1022338118561

    CAS  Article  Google Scholar 

  • Petermann JS, Müller CB, Weigelt A, Weisser WW, Schmid B (2010) Effect of plant species loss on aphid–parasitoid communities. J Anim Ecol 79:709–720. doi:10.1111/j.1365-2656.2010.01674.x

    Article  PubMed  Google Scholar 

  • Poelman EH, van Loon JJA, Dicke M (2008) Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci 13:534–541. doi:10.1016/j.tplants.2008.08.003

    CAS  Article  PubMed  Google Scholar 

  • Prudic KL, Oliver JC, Bowers MD (2005) Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore. Oecologia 143:578–587. doi:10.1007/s00442-005-0008-5

    Article  PubMed  Google Scholar 

  • Quintero C, Bowers MD (2012) Changes in plant chemical defenses and nutritional quality as a function of ontogeny in Plantago lanceolata (Plantaginaceae). Oecologia 168:471–481. doi:10.1007/s00442-011-2114-x

    Article  PubMed  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Randlkofer B, Obermaier E, Meiners T (2007) Mother’s choice of the oviposition site: balancing risk of egg parasitism and need of food supply for the progeny with an infochemical shelter? Chemoecology 17:177–186. doi:10.1007/s00049-007-0377-9

    Article  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124. doi:10.2307/1942161

    Article  Google Scholar 

  • Sarfraz M, Dosdall LM, Keddie BA (2009a) Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare. Biol Control 51:34–41. doi:10.1016/j.biocontrol.2009.07.004

    CAS  Article  Google Scholar 

  • Sarfraz M, Dosdall LM, Keddie BA (2009b) Bottom-up effects of host plant nutritional quality on Plutella xylostella (Lepidoptera: Plutellidae) and top-down effects of herbivore attack on plant compensatory ability. Eur J Entomol 106:583–594

    CAS  Article  Google Scholar 

  • Scherber C, Mwangi PN, Temperton VM, Roscher C, Schumacher J, Schmid B, Weisser WW (2006) Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147:489–500. doi:10.1007/s00442-005-0281-3

    Article  PubMed  Google Scholar 

  • Scherling C, Roscher C, Giavalisco P, Schulze E-D, Weckwerth W (2010) Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS One 5(9):e12569. doi:10.1371/journal.pone.0012569

    PubMed Central  Article  PubMed  Google Scholar 

  • Schmitz O (2010) Resolving ecosystem complexity. Monogr Popul Biol 47. Princeton University Press, New Jersey

    Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. University Press, Oxford

    Google Scholar 

  • Schubert R, Vent W (1990) Exkursionsflora von Deutschland 4, 8th edn. Volk und Wissen, Berlin

    Google Scholar 

  • Selosse MA, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628. doi:10.1016/j.tree.2006.07.003

    Article  PubMed  Google Scholar 

  • Sheehan W (1986) Response by specialist and generalist natural enemies to agroecosystem diversification: a selective review. Environ Entomol 15:456–461

    Article  Google Scholar 

  • Smilanich AM, Dyer LA, Chambers JQ, Bowers MD (2009) Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol Lett 12:612–621. doi:10.1111/j.1461-0248.2009.01309.x

    Article  PubMed  Google Scholar 

  • Spiegelberger T, Matthies D, Müller-Schärer H, Schaffner U (2006) Scale-dependent effects of land use on plant species richness of mountain grassland in the European Alps. Ecography 29:541–548

    Article  Google Scholar 

  • Thompson SN (1999) Nutrition and culture of entomophagous insects. Annu Rev Entomol 44:561–592. doi:10.1146/annurev.ento.44.1.561

    CAS  Article  PubMed  Google Scholar 

  • Throop HL, Lerdau MT (2004) Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems 7:109–133. doi:10.1007/s10021-003-0225-x

    CAS  Article  Google Scholar 

  • Unsicker SB, Baer N, Kahmen A, Wagner M, Buchmann N, Weisser WW (2006) Invertebrate herbivory along a gradient of plant species diversity in extensively managed grasslands. Oecologia 150:233–246. doi:10.1007/s00442-006-0511-3

    Article  PubMed  Google Scholar 

  • Weisser WW, Siemann E (2004) The various effects of insects on ecosystem functioning. In: Weisser WW, Siemann E (eds) Insects and ecosystem function. Springer, Berlin, pp 3–24

    Chapter  Google Scholar 

  • White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, Berlin

    Book  Google Scholar 

  • Williams IS (1999) Slow-growth, high-mortality—a general hypothesis, or is it? Ecol Entomol 24:490–495. doi:10.1046/j.1365-2311.1999.00217.x

    Article  Google Scholar 

  • Wurst S, Wagenaar R, Biere A, van der Putten WH (2010) Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant Soil 329:117–126. doi:10.1007/s11104-009-0139-2

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the managers of the three Biodiversity Exploratories, Swen Renner, Sonja Gockel, Andreas Hemp, Martin Gorke, and Simone Pfeiffer for their work in maintaining the plot and project infrastructure, and Markus Fischer, the late Elisabeth K. V. Kalko, K. Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze and Wolfgang W. Weisser for their role in setting up the Biodiversity Exploratories project. Furthermore, we thank Manfred Forstreuter for technical help with the C/N analyser, Frank Müller for technical assistance with the HPLC, and Caroline Müller for the donation of aucubin und catalpol. Philipp Braun, Katharina Fraunhofer, Ivonne Halboth, Judith Escher, Sabina Reschke and Christoph Rothenwöhrer are appreciated for assistance in the field and in the laboratory. We thank Peter Sprick and Stefan Vidal for identifying weevils and parasitoids. We thank Spencer T. Behmer, Ivo Beyaert, Kazumi Miura and two anonymous reviewers for comments on earlier versions of the manuscript. We thank Martin McLean for English revisions. The work has been funded by the Deutsche Forschungsgemeinschaft Priority Program 1374 Infrastructure-Biodiversity-Exploratories (ME 1810/5-1, OB 185/2-1). Fieldwork permits were issued by the state environmental offices of Baden-Württemberg, Thuringia, and Brandenburg, Germany (according to §72 BbgNatSchG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Meiners.

Additional information

Communicated by Diethart Matthies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 207 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wäschke, N., Hancock, C., Hilker, M. et al. Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?. Oecologia 179, 281–292 (2015). https://doi.org/10.1007/s00442-015-3347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3347-x

Keywords

  • Plantago lanceolata
  • Land use intensity index
  • Iridoid glycosides
  • Herbivore abundance
  • Parasitoid abundance