Bårdsen BJ, Henden JA, Fauchald P, Tveraa T, Stien A (2011) Plastic reproductive allocation as a buffer against environmental stochasticity–linking life history and population dynamics to climate. Oikos 120:245–257. doi:10.1111/j.1600-0706.2010.18597.x
Article
Google Scholar
Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–272. doi:10.1007/bf00344996
Article
Google Scholar
Brose U, Dunne JA, Montoya JM, Petchey OL, Schneider FD, Jacob U (2012) Climate change in size-structured ecosystems. Philos Trans R Soc B Biol Sci 367:2903–2912. doi:10.1098/rstb.2012.0232
Article
Google Scholar
Brown CR, Brown MB (1998) Intense natural selection on body size and wing and tail asymmetry in cliff swallows during severe weather. Evolution 52:1461–1475. doi:10.2307/2411315
Brown JH, Sibly RM (2006) Life-history evolution under a production constraint. Proc Natl Acad Sci USA 103:17595–17599. doi:10.1073/pnas.0608522103
Buhlmann KA, Congdon JD, Gibbons JW, Greene JL (2009) Ecology of chicken turtles (Deirochelys reticularia) in a seasonal wetland ecosystem: exploiting resource and refuge environments. Herpetologica 65:39–53. doi:10.1655/08-028R1.1
Article
Google Scholar
Caswell H (2001) Matrix population models, 2nd edn. Sinauer Associates, Sunderland
Clutton-Brock TH, Pemberton JM (2004) Soay sheep: dynamics and selection in an island population. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511550669
Congdon JD, Dunham AE, Van Loben Sels RC (1994) Demographics of common snapping turtles (Chelydra serpentina): implications for conservation and management of long-lived organisms. Am Zool 34:397–408. doi:10.1093/icb/34.3.397
Google Scholar
Davis WB, Knapp FT (1953) Notes on the salamander Siren intermedia. Copeia 1953:119–121. doi:10.2307/1440144
Article
Google Scholar
Dobson GP, Headrick JP (1995) Bioenergetic scaling: metabolic design and body-size constraints in mammals. Proc Natl Acad Sci USA 92:7317–7321. doi:10.1073/pnas.92.16.7317
Etheridge K (1990) The energetics of estivating sirenid salamanders (Siren lacertina and Pseudobranchus striatus). Herpetologica 46:407–414
Frese PW, Mathis A, Wilkinson R (2003) Population characteristics, growth, and spatial activity of Siren intermedia in an intensively managed wetland. Southwest Nat 48:534–542. doi: 10.1894/0038-4909(2003)048<0534:PCGASA>2.0.CO;2
Gehlbach FR, Kennedy SE (1978) Population ecology of a highly productive aquatic salamander (Siren intermedia). Southwest Nat 23:423–429. doi:10.2307/3670250
Article
Google Scholar
Gehlbach FR, Gordon R, Jordan JB (1973) Aestivation of the salamander, Siren intermedia. Am Midl Nat 89:455–463. doi:10.2307/2424051
Article
Google Scholar
Gibbons JW, Semlitsch RD, Greene JL, Schubauer JP (1981) Variation in age and size at maturity of the slider turtle (Pseudemys scripta). Am Nat 117:841–845. doi:10.1086/283774
Article
Google Scholar
Gibbons JW, Greene JL, Congdon JD (1983) Drought-related responses of aquatic turtle populations. J Herpetol 17:242–246. doi:10.2307/1563826
Article
Google Scholar
Goin CJ (1947) Notes on the eggs and early larvae of three Florida salamanders. Chic Acad Sci Nat Hist Misc 10:1–4
Google Scholar
Hanlin HG, Mount RH (1978) Reproduction and activity of the greater siren, Siren lacertina (Amphibia: Sirenidae), in Alabama. J Ala Acad Sci 49:31–39
Google Scholar
Holdo RM, Fryxell JM, Sinclair ARE, Dobson A, Holt RD (2011) Predicted impact of barriers to migration on the Serengeti wildebeest population. PLoS One 6:e16370. doi:10.1371/journal.pone.0016370
CAS
PubMed Central
PubMed
Article
Google Scholar
Kingsolver JG, Pfennig DW (2004) Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58:1608–1612. doi:10.1554/04-003
PubMed
Article
Google Scholar
Lindstedt SL, Boyce MS (1985) Seasonality, fasting, endurance, and body size in mammals. Am Nat 125:873–878. doi:10.1086/284385
Article
Google Scholar
Luhring TM (2008) Population ecology of greater siren, Siren lacertina. M.S. thesis. University of Georgia, Athens
Luhring TM (2009) Using PIT tags to evaluate non-individual-specific marks under field conditions: a case study with greater siren (Siren lacertina). Herpetol Rev 40:170–173
Google Scholar
Luhring TM, Jennison CA (2008) A new stratified aquatic sampling technique for aquatic vertebrates. J Freshw Ecol 23:445–450. doi:10.1080/02705060.2008.9664222
Article
Google Scholar
Luhring TM, Todd BD (2010) Siren intermedia (lesser siren). Drought survival. Herpetol Rev 41:60
Luhring TM, Willson JD, Winne CT (2011) Nerodia fasciata (banded watersnake). Inter-wetland movement. Herpetol Rev 42:100–101
Nagel L, Schluter D (1998) Body size, natural selection, and speciation in sticklebacks. Evolution 52:209–218. doi:10.2307/2410936
Article
Google Scholar
Nakaoka M (1998) Optimal resource allocation of the marine bivalve Yoldia notabilis: the effects of size-limited reproductive capacity and size-dependent mortality. Evol Ecol 12:347–361
Overpeck J, Udall B (2010) Dry times ahead. Science 328:1642–1643. doi:10.1126/science.1186591
CAS
PubMed
Article
Google Scholar
Pearl R, Miner JR (1935) Experimental studies on the duration of life. XIV. The comparative mortality of certain lower organisms. Q Rev Biol 10:60–79. doi:10.1086/394476
Article
Google Scholar
Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511608551
Book
Google Scholar
Roff DA (1992) The evolution of life histories: theory and analysis. Chapman and Hall, New York
Google Scholar
Schalk CM, Luhring TM (2010) Vagility of aquatic salamanders: implications for wetland connectivity. J Herpetol 44:104–109. doi:10.1670/08-312.1
Article
Google Scholar
Sever DM, Rania LC, Krenz JD (1996) Reproduction of the salamander Siren intermedia Le Conte with especial reference to oviducal anatomy and mode of fertilization. J Morphol 227:335–348. doi:10.1002/(SICI)1097-4687(199603)227:3<335:AID-JMOR5>3.0.CO;2-4
Article
Google Scholar
Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406. doi:10.1038/nclimate1259
Article
Google Scholar
Shine R (1988) The evolution of large body size in females: a critique of Darwin’s “fecundity advantage” model. Am Nat 131:124–131. doi:10.1086/284778
Article
Google Scholar
Snodgrass JW, Ackerman JW, Bryan ALJ, Burger J (1999) Influence of hydroperiod, isolation, and heterospecifics on the distribution of aquatic salamanders (Siren and Amphiuma) among depression wetlands. Copeia 1999:107–113. doi:10.2307/1447391
Article
Google Scholar
Stearns SC (1976) Life-history tactics: a review of the ideas. Q Rev Biol 51:3–47. doi:10.1086/409052
CAS
PubMed
Article
Google Scholar
Taborsky B, Dieckmann U, Heino M (2003) Unexpected discontinuities in life-history evolution under size-dependent mortality. Proc R Soc Lond Ser B Biol Sci 270:713–721. doi:10.1098/rspb.2002.2255
Article
Google Scholar
Walls SC, Barichivich WJ, Brown ME (2013) Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate. Biology 2:399–418. doi:10.3390/biology2010399
PubMed Central
PubMed
Article
Google Scholar
Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago. doi:10.7208/chicago/9780226893334.001.0001
Book
Google Scholar
Werner EE (1986) Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am Nat 128:319–341. doi:10.1086/284565
Article
Google Scholar
Wikelski M, Trillmich F (1997) Body size and sexual size dimorphism in marine iguanas fluctuate as a result of opposing natural and sexual selection: an island comparison. Evolution 51:922–936. doi:10.2307/2411166
Article
Google Scholar
Williams GC (1966) Natural selection costs of reproduction and a refinement of Lack’s principle. Am Nat 169:673–683. doi:10.1086/282461
Google Scholar
Willson JD, Winne CT, Dorcas ME, Gibbons JW (2006) Post-drought responses of semi-aquatic snakes inhabiting an isolated wetland: insights on different strategies for persistence in a dynamic habitat. Wetlands 26:1071–1078. doi:10.1672/0277-5212(2006)26[1071:prossi]2.0.co;2
Winne CT, Willson JD, Gibbons JW (2010) Drought survival and reproduction impose contrasting selection pressures on maximum body size and sexual size dimorphism in a snake, Seminatrix pygaea. Oecologia 162:913–922. doi:10.1007/s00442-009-1513-8
PubMed
Article
Google Scholar
Withers PC (1993) Metabolic depression during aestivation in the Australian frogs, Neobatrachus and Cyclorana. Aust J Zool 41:467–473. doi:10.1071/zo9930467
Article
Google Scholar
Woodward G, Brown LE, Edwards FK, Hudson LN, Milner AM, Reuman DC, Ledger ME (2012) Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment. Philos Trans Roy Soc B Biol Sci 367:2990–2997. doi:10.1098/rstb.2012.0245
Article
Google Scholar