, Volume 178, Issue 1, pp 141–151 | Cite as

Contrasting growth responses of dominant peatland plants to warming and vegetation composition

  • Tom N. WalkerEmail author
  • Susan E. Ward
  • Nicholas J. Ostle
  • Richard D. Bardgett
Highlighted Student Research


There is growing recognition that changes in vegetation composition can strongly influence peatland carbon cycling, with potential feedbacks to future climate. Nevertheless, despite accelerated climate and vegetation change in this ecosystem, the growth responses of peatland plant species to combined warming and vegetation change are unknown. Here, we used a field warming and vegetation removal experiment to test the hypothesis that dominant species from the three plant functional types present (dwarf-shrubs: Calluna vulgaris; graminoids: Eriophorum vaginatum; bryophytes: Sphagnum capillifolium) contrast in their growth responses to warming and the presence or absence of other plant functional types. Warming was accomplished using open top chambers, which raised air temperature by approximately 0.35 °C, and we measured air and soil microclimate as potential mechanisms through which both experimental factors could influence growth. We found that only Calluna growth increased with experimental warming (by 20 %), whereas the presence of dwarf-shrubs and bryophytes increased growth of Sphagnum (46 %) and Eriophorum (20 %), respectively. Sphagnum growth was also negatively related to soil temperature, which was lower when dwarf-shrubs were present. Dwarf-shrubs may therefore promote Sphagnum growth by cooling the peat surface. Conversely, the effect of bryophyte presence on Eriophorum growth was not related to any change in microclimate, suggesting other factors play a role. In conclusion, our findings reveal contrasting abiotic and biotic controls over dominant peatland plant growth, suggesting that community composition and carbon cycling could be modified by simultaneous climate and vegetation change.


Calluna vulgaris Competition Eriophorum vaginatum Facilitation Microclimate Open top chambers Peatlands Sphagnum 



This research was supported by a Natural Environment Research Council (NERC) CASE Studentship between The University of Manchester and Centre for Ecology and Hydrology (CEH) Lancaster, and made use of an experiment set up with funding from a NERC EHFI Grant (NE/E011594/1) awarded to R.D.B. and N.J.O. We thank colleagues from Lancaster University and CEH Lancaster, and in particular Caley Brown and Simon Oakley, for help in the field. We also thank Natural England and the Environmental Change Network, CEH Lancaster, for access to the site and meteorological data.

Supplementary material

442_2015_3254_MOESM1_ESM.docx (166 kb)
Supplementary material (DOCX 165 kb)


  1. Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol 182:65–77. doi: 10.1007/s11258-005-9031-1 Google Scholar
  2. Bardgett RD, Manning P, Morriën E, De Vries FT (2013) Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle. J Ecol 101:334–343. doi: 10.1111/1365-2745.12043 CrossRefGoogle Scholar
  3. Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699. doi: 10.1016/j.tree.2014.10.006 CrossRefPubMedGoogle Scholar
  4. Billett MF, Charman DJ, Clark JM et al (2010) Carbon balance of UK peatlands: current state of knowledge and future research challenges. Clim Res 45:13–29. doi: 10.3354/cr00903 CrossRefGoogle Scholar
  5. Blok D, Heijmans MMPD, Schaepman-Strub G et al (2011a) The cooling capacity of mosses: controls on water and energy fluxes in a siberian tundra site. Ecosystems 14:1055–1065. doi: 10.1007/s10021-011-9463-5 CrossRefGoogle Scholar
  6. Blok D, Schaepman-Strub G, Bartholomeus H et al (2011b) The response of arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ Res Lett 6:035502. doi: 10.1088/1748-9326/6/3/035502 CrossRefGoogle Scholar
  7. Bokhorst S, Huiskes A, Aerts R et al (2013) Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Glob Change Biol 19:64–74. doi: 10.1111/gcb.12028 CrossRefGoogle Scholar
  8. Bu Z-J, Rydin H, Chen X (2011) Direct and interaction-mediated effects of environmental changes on peatland bryophytes. Oecologia 166:555–563. doi: 10.1007/s00442-010-1880-1 CrossRefPubMedGoogle Scholar
  9. Chapin FS III (1983) Direct and indirect effects of temperature on arctic plants. Polar Biol 2:47–52CrossRefGoogle Scholar
  10. Clymo RS (1970) The growth of Sphagnum: methods of measurement. J Ecol 58:13–49CrossRefGoogle Scholar
  11. Cornelissen JHC, Lavorel S, Garnier E et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  12. Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi: 10.1111/j.1461-0248.2008.01219.x CrossRefPubMedGoogle Scholar
  13. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. doi: 10.1038/Nature04514 CrossRefPubMedGoogle Scholar
  14. Dawes MA, Hagedorn F, Zumbrunn T et al (2011) Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytol 191:806–818. doi: 10.1111/j.1469-8137.2011.03722.x CrossRefPubMedGoogle Scholar
  15. De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531. doi: 10.1111/j.1461-0248.2008.01164.x CrossRefPubMedGoogle Scholar
  16. DeLuca T, Zackrisson O, Nilsson M, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920. doi: 10.1038/nature01136.1 CrossRefPubMedGoogle Scholar
  17. Dise NB (2009) Peatland response to global change. Science 326:810–811. doi: 10.1126/science.1174268 CrossRefPubMedGoogle Scholar
  18. Dorrepaal E (2007) Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? J Ecol 95:1167–1180. doi: 10.1111/j.1365-2745.2007.01294.x CrossRefGoogle Scholar
  19. Dorrepaal E, Toet S, van Logtestijn RSP et al (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–620. doi: 10.1038/Nature08216 CrossRefGoogle Scholar
  20. Elmendorf SC, Henry GHR, Hollister RD et al (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175. doi: 10.1111/j.1461-0248.2011.01716.x CrossRefPubMedGoogle Scholar
  21. Friedlingstein P, Cox P, Betts R et al (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353. doi: 10.1175/JCLI3800.1 CrossRefGoogle Scholar
  22. Gallego-Sala AV, Prentice CI (2012) Blanket peat biome endangered by climate change. Nat Clim Change 3:152–155. doi: 10.1038/nclimate1672 CrossRefGoogle Scholar
  23. Genney DR, Alexander IJ, Hartley SE (2000) Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas. J Exp Bot 51:1117–1125CrossRefPubMedGoogle Scholar
  24. Gimingham CH (1960) Calluna vulgaris (Hull). J Ecol 48:455–483CrossRefGoogle Scholar
  25. Grace J, Marks TC (1978) Physiological aspects of bog production at Moor House. In: Heal OW, Perkins DF (eds) Production ecology of British Moors and montane grassland. Springer, New York, pp 38–51CrossRefGoogle Scholar
  26. Gray A, Levy PE, Cooper MDA et al (2013) Methane indicator values for peatlands: a comparison of species and functional groups. Glob Change Biol 19:1141–1150. doi: 10.1111/gcb.12120 CrossRefGoogle Scholar
  27. Groffman PM, Driscoll CT, Fahey TJ et al (2001) Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56:135–150CrossRefGoogle Scholar
  28. Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:269–279. doi: 10.1179/174328205X70029 CrossRefGoogle Scholar
  29. Heal OW, Smith RI (1978) The Moor House Program: introduction and site description. In: Heal OW, Perkins DF (eds) Production ecology of British Moors and montane grassland. Springer, New York, pp 304–331CrossRefGoogle Scholar
  30. Hooper D, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. doi: 10.1038/nature11118 PubMedGoogle Scholar
  31. Hudson JMG, Henry GHR, Cornwell WK (2011) Taller and larger: shifts in arctic tundra leaf traits after 16 years of experimental warming. Glob Change Biol 17:1013–1021. doi: 10.1111/j.1365-2486.2010.02294.x CrossRefGoogle Scholar
  32. IPCC (2007) The physical science basis: contribution of working group I to the fourth assessment of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  33. Jassey VEJ, Chiapusio G, Binet P et al (2013) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant–microbial interactions. Glob Change Biol 19:811–823. doi: 10.1111/gcb.12075 CrossRefGoogle Scholar
  34. Keuper F, Dorrepaal E, van Bodegom PM et al (2011) A race for space? How Sphagnum fuscum stabilizes vegetation composition during long-term climate manipulations. Glob Change Biol 17:2162–2171. doi: 10.1111/j.1365-2486.2010.02377.x CrossRefGoogle Scholar
  35. Kool A, Heijmans M (2009) Dwarf shrubs are stronger competitors than graminoid species at high nutrient supply in peat bogs. Plant Ecol 204:125–134. doi: 10.1007/sl1258-009-9574-7 CrossRefGoogle Scholar
  36. Loisel J, Gallego-Sala AV, Yu Z (2012) Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 9:2737–2746. doi: 10.5194/bg-9-2737-2012 CrossRefGoogle Scholar
  37. Marion GM, Henry GHR, Freckman DW et al (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Change Biol 3:20–32CrossRefGoogle Scholar
  38. Medina-Roldán E, Bardgett RD (2012) Inter-specific competition, but not different soil microbial communities, affects N chemical forms uptake by competing graminoids of upland grasslands. PLoS ONE 7:e51193. doi: 10.1371/journal.pone.0051193 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Metcalfe DB, Fisher RA, Wardle DA (2011) Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8:2047–2061. doi: 10.5194/bg-8-2047-2011 CrossRefGoogle Scholar
  40. Moore PD (2002) The future of cool temperate bogs. Environ Conserv 29:3–20. doi: 10.1017/S0376892902000024 CrossRefGoogle Scholar
  41. Murray KJ, Tenhunen JD, Kummerow J (1989) Limitations on Sphagnum growth and net primary production in the foothills of the Philip Smith Mountains, Alaska. Oecologia 80:256–262CrossRefGoogle Scholar
  42. Myers-Smith IH, Forbes BC, Wilmking M et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509. doi: 10.1088/1748-9326/6/4/045509 CrossRefGoogle Scholar
  43. Pinheiro J, Bates D, DebRoy S et al (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-119.
  44. Prentice IC, Farquhar GD, Fasham MJR et al (2001) The carbon cycle and atmospheric carbon dioxide. Chapter 3 of the Third Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK, pp 183–238Google Scholar
  45. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263. doi: 10.1139/b04-123 CrossRefGoogle Scholar
  46. Rodwell JS (1991) British plant communities. Mires and heaths, vol 2. Cambridge University Press, CambridgeGoogle Scholar
  47. Rustad LE, Campbell JL, Marion GM et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562. doi: 10.1007/s004420000544 CrossRefGoogle Scholar
  48. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  49. Trinder CJ, Artz RRE, Johnson D (2008) Contribution of plant photosynthate to soil respiration and dissolved organic carbon in a naturally recolonising cutover peatland. Soil Biol Biochem 40:1622–1628. doi: 10.1016/j.soilbio.2008.01.016 CrossRefGoogle Scholar
  50. Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409. doi: 10.1639/05 CrossRefGoogle Scholar
  51. Walker M, Wahren C, Hollister RD et al (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346. doi: 10.1073/pnas.0503198103 CrossRefPubMedCentralPubMedGoogle Scholar
  52. Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Funct Ecol 23:454–462. doi: 10.1111/j.1365-2435.2008.01521.x CrossRefGoogle Scholar
  53. Ward SE, Ostle NJ, Oakley S et al (2013) Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecol Lett 16:1285–1293. doi: 10.1111/ele.12167 CrossRefPubMedGoogle Scholar
  54. Ward SE, Orwin K, Ostle NJ et al (2014) Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology. doi: 10.1890/14-0292.1 PubMedGoogle Scholar
  55. Wardle DA, Bardgett RD, Callaway RM, van der Putten WH et al (2011) Terrestrial ecosystem responses to species gains and losses. Science 332:1273–1277. doi: 10.1126/science.1197479 CrossRefPubMedGoogle Scholar
  56. Wein RW (1973) Eriophorum vaginatum L. J Ecol 61:601–615CrossRefGoogle Scholar
  57. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20Google Scholar
  58. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkGoogle Scholar
  59. Wickham H (2011) The split–apply–combine strategy for data analysis. J Stat Softw 40:1–29Google Scholar
  60. Zuur A, Ieno E, Walker N et al (2010) Mixed effects models and extensions in ecology with R. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tom N. Walker
    • 1
    • 2
    • 3
    Email author
  • Susan E. Ward
    • 3
  • Nicholas J. Ostle
    • 2
    • 3
  • Richard D. Bardgett
    • 1
    • 3
  1. 1.Faculty of Life Sciences, Michael Smith BuildingThe University of ManchesterManchesterUK
  2. 2.Centre for Ecology and HydrologyLancaster Environment CentreLancasterUK
  3. 3.Lancaster Environment CentreLancaster UniversityLancasterUK

Personalised recommendations