, Volume 178, Issue 1, pp 61–74 | Cite as

Timescales alter the inferred strength and temporal consistency of intraspecific diet specialization

  • Mark NovakEmail author
  • M. Tim Tinker
Special Topic: Individual-level niche specialization


Many populations consist of individuals that differ substantially in their diets. Quantification of the magnitude and temporal consistency of such intraspecific diet variation is needed to understand its importance, but the extent to which different approaches for doing so reflect instantaneous vs. time-aggregated measures of individual diets may bias inferences. We used direct observations of sea otter individuals (Enhydra lutris nereis) to assess how: (1) the timescale of sampling, (2) under-sampling, and (3) the incidence- vs. frequency-based consideration of prey species affect the inferred strength and consistency of intraspecific diet variation. Analyses of feeding observations aggregated over hourly to annual intervals revealed a substantial bias associated with time aggregation that decreases the inferred magnitude of specialization and increases the inferred consistency of individuals’ diets. Time aggregation also made estimates of specialization more sensitive to the consideration of prey frequency, which decreased estimates relative to the use of prey incidence; time aggregation did not affect the extent to which under-sampling contributed to its overestimation. Our analyses demonstrate the importance of studying intraspecific diet variation with an explicit consideration of time and thereby suggest guidelines for future empirical efforts. Failure to consider time will likely produce inconsistent predictions regarding the effects of intraspecific variation on predator–prey interactions.


Individual variation Predation Prey switching Seasonal prey selection Time-averaging 



We are grateful to the many people who contributed to field research and data collection, especially C. Alfano, J. Ames, G. Bentall, J. Bodkin, B. Cummings, G. Esslinger, J. Estes, M. Harris, B. Hatfield, D. Jessup, A. Kage, M. Kenner, C. Lin, D. Monson, M. Murray, T. Nicholson, J. Perry, M. Staedler, J. Stewart, S. Wolrab and L. Yeates. We also thank D. Bolnick, P. Guimarães, Jr., K. Laidre, J. Yee and two anonymous reviewers for suggestions made on the manuscript. Support for field work was provided by the US Geological Survey, the California Department of Fish and Game, the Monterey Bay Aquarium, the Kenneth S. Norris Rancho Marina Reserve, and a grant from the Minerals Management Service. M. N. received partial support from National Science Foundation OCE- 1041454. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the US government.

Supplementary material

442_2014_3213_MOESM1_ESM.pdf (160 kb)
Supplementary material 1 (PDF 160 kb)
442_2014_3213_MOESM2_ESM.pdf (252 kb)
Supplementary material 2 (PDF 252 kb)
442_2014_3213_MOESM3_ESM.pdf (422 kb)
Supplementary material 3 (PDF 422 kb)
442_2014_3213_MOESM4_ESM.pdf (1.7 mb)
Supplementary material 4 (PDF 1773 kb)
442_2014_3213_MOESM5_ESM.pdf (606 kb)
Supplementary material 5 (PDF 606 kb)


  1. Abrams PA, Matsuda H (2004) Consequences of behavioral dynamics for the population dynamics of predator–prey systems with switching. Popul Ecol 46:13–25CrossRefGoogle Scholar
  2. Araújo M, Bolnick D, Machado G, Giaretta A, dos Reis S (2007) Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152:643–654CrossRefPubMedGoogle Scholar
  3. Araújo MS et al (2008) Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology 89:1981–1993CrossRefPubMedGoogle Scholar
  4. Araújo MS, Bolnick DI, Martinelli LA, Giaretta AA, Reis SFd (2009) Individual-level diet variation in four species of Brazilian frogs. J Anim Ecol 78:848–856CrossRefPubMedGoogle Scholar
  5. Araújo MS et al (2010) Nested diets: a novel pattern of individual-level resource use. Oikos 119:81–88CrossRefGoogle Scholar
  6. Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958. doi: 10.1111/j.1461-0248.2011.01662.x CrossRefPubMedGoogle Scholar
  7. Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783CrossRefPubMedCentralPubMedGoogle Scholar
  8. Bodkin JL, Monson DH, Esslinger GG (2007) Activity budgets derived from time-depth recorders in a diving mammal. J Wildl Manage 71:2034–2044CrossRefGoogle Scholar
  9. Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440. doi: 10.1146/annurev-ecolsys-102209-144726 CrossRefGoogle Scholar
  10. Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941CrossRefGoogle Scholar
  11. Bolnick DI et al (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28CrossRefPubMedGoogle Scholar
  12. Bolnick DI, Svanbäck R, Araujo MS, Persson L (2007) Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc Natl Acad Sci 104:10075–10079. doi: 10.1073/pnas.0703743104 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Bolnick DI et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192CrossRefPubMedCentralPubMedGoogle Scholar
  14. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, BerlinGoogle Scholar
  15. Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159CrossRefGoogle Scholar
  16. Chesson P (1978) Predator–prey theory and variability. Annu Rev Ecol Syst 9:323–347. doi: 10.1146/ CrossRefGoogle Scholar
  17. Edelstein-Keshet L (2005) Mathematical models in biology. Society of Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  18. Estes JA, Riedman ML, Staedler MM, Tinker MT, Lyon BE (2003) Individual variation in prey selection by sea otters: patterns, causes and implications. J Anim Ecol 72:144–155. doi: 10.1046/j.1365-2656.2003.00690.x CrossRefGoogle Scholar
  19. Grant PR, Grant BR, Smith JN, Abbott IJ, Abbott LK (1976) Darwin’s finches: population variation and natural selection. Proc Natl Acad Sci 73:257–261CrossRefPubMedCentralPubMedGoogle Scholar
  20. Harmon LJ, Matthews B, Des Roches S, Chase JM, Shurin JB, Schluter D (2009) Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458:1167–1170CrossRefPubMedGoogle Scholar
  21. Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623. doi: 10.1111/j.1461-0248.2008.01179.x CrossRefPubMedGoogle Scholar
  22. Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307CrossRefGoogle Scholar
  23. Ingram T, Stutz WE, Bolnick DI (2011) Does intraspecific size variation in a predator affect its diet diversity and top-down control of prey? PLoS One 6:e20782CrossRefPubMedCentralPubMedGoogle Scholar
  24. Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaud Sci Nat 37Google Scholar
  25. Jennings S, Maxwell TAD, Schratzberger M, Milligan SP (2008) Body-size dependent temporal variations in nitrogen stable isotope ratios in food webs. Mar Ecol Prog Ser 370:199–206. doi: 10.3354/meps07653 CrossRefGoogle Scholar
  26. Johnson CK et al (2009) Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. Proc Natl Acad Sci 106:2242–2247CrossRefPubMedCentralPubMedGoogle Scholar
  27. Jost L (2006) Entropy and diversity. Oikos 113:363–375CrossRefGoogle Scholar
  28. Legler ND, Johnson TB, Heath DD, Ludsin SA (2010) Water temperature and prey size effects on the rate of digestion of larval and early juvenile fish. Trans Am Fish Soc 139:868–875. doi: 10.1577/t09-212.1 CrossRefGoogle Scholar
  29. Lewis AC (1986) Memory constraints and flower choice in pieris rapae. Science 232:863–865CrossRefPubMedGoogle Scholar
  30. MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385CrossRefGoogle Scholar
  31. May RM (1975) Some notes on estimating the competition matrix, α. Ecology 56:737–741CrossRefGoogle Scholar
  32. McIntyre P, Flecker A (2006) Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia 148:12–21CrossRefPubMedGoogle Scholar
  33. Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–130CrossRefGoogle Scholar
  34. Newsome SD et al (2010) Variation in δ13C and δ15N diet-vibrissae trophic discrimination factors in a wild population of California sea otters. Ecol Appl 20:1744–1752. doi: 10.1890/09-1502.1 CrossRefPubMedGoogle Scholar
  35. Newsome SD, Yeakel J, Wheatley PV, Tinker MT (2012) Tools for quantifying isotopic niche space and dietary variation at the individual and population level. J Mammal 93:329CrossRefGoogle Scholar
  36. Oftedal OT, Ralls K, Tinker MT, Green A (2007) Nutritional constraints on the southern sea otter in the Monterey Bay National Marine Sanctuary and a comparison to sea otter populations at San Nicolas Island, California and Glacier Bay, Alaska. Monterey Bay National Marine Sanctuary and the Marine Mammal Commission, pp 1–263Google Scholar
  37. Okuyama T (2008) Individual behavioral variation in predator–prey models. Ecol Res 23:665–671CrossRefGoogle Scholar
  38. O’Reilly CM, Hecky RE, Cohen AS, Plisnier P-D (2002) Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels. Limnol Oceanogr 47:305–309Google Scholar
  39. Pettorelli N, Coulson T, Durant S, Gaillard J-M (2011) Predation, individual variability and vertebrate population dynamics. Oecologia 167:305–314. doi: 10.1007/s00442-011-2069-y CrossRefPubMedGoogle Scholar
  40. Phillips DL, Newsome SD, Gregg JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527CrossRefPubMedGoogle Scholar
  41. Poisot T, Canard E, Mouquet N, Hochberg ME (2012) A comparative study of ecological specialization estimators. Methods Ecol Evol. doi: 10.1111/j.2041-210X.2011.00174.x Google Scholar
  42. Price T (1987) Diet variation in a population of Darwin’s finches. Ecology 68:1015–1028. doi: 10.2307/1938373 CrossRefGoogle Scholar
  43. Renkonen O (1938) Statistisch-ökologische Untersuchungen über die terrestische Käferwelt der finnischen Bruchmoore. Ann Bot Soc Zool-Bot Fenn Vanamo 6:1–231Google Scholar
  44. Rudolf VHW, Rasmussen NL (2013) Population structure determines functional differences among species and ecosystem processes. Nat Commun 4. doi: 10.1038/ncomms3318 Google Scholar
  45. Schatzmann E, Gerrard R, Barbour AD (1986) Measures of niche overlap. I Math Med Biol 3:99–113. doi: 10.1093/imammb/3.2.99 CrossRefGoogle Scholar
  46. Schoener TW (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704–726CrossRefGoogle Scholar
  47. Schreiber SJ, Bürger R, Bolnick DI (2011) The community effects of phenotypic and genetic variation within a predator population. Ecology 92:1582–1593. doi: 10.1890/10-2071.1 CrossRefPubMedGoogle Scholar
  48. Svanbäck R, Bolnick DI (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc R Soc Lond B Biol Sci 274:839–844CrossRefGoogle Scholar
  49. Tinker MT, Costa DP, Estes JA, Wieringa N (2007) Individual dietary specialization and dive behaviour in the California sea otter: using archival time-depth data to detect alternative foraging strategies. Deep-Sea Res Part II 54:330–342CrossRefGoogle Scholar
  50. Tinker MT, Bentall G, Estes JA (2008) Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proc Natl Acad Sci 105:560–565. doi: 10.1073/pnas.0709263105 CrossRefPubMedCentralPubMedGoogle Scholar
  51. Tinker MT et al (2012) Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecol Lett 15:475–483. doi: 10.1111/j.1461-0248.2012.01760.x CrossRefGoogle Scholar
  52. Ward EJ, Semmens BX, Phillips DL, Moore JW, Bouwes N (2011) A quantitative approach to combine sources in stable isotope mixing models. Ecosphere 2: art19. doi: 10.1890/ES10-00190.1 Google Scholar
  53. Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50:296–302CrossRefGoogle Scholar
  54. Yeakel JD et al (2011) Merging resource availability with isotope mixing models: the role of neutral interaction assumptions. PLoS One 6:e22015CrossRefPubMedCentralPubMedGoogle Scholar
  55. Yoshida T, Ellner SP, Jones LE, Bohannan BJM, Lenski RE, Hairston NG (2007) Cryptic population dynamics: rapid evolution masks trophic interactions. PLoS Biol 5:e235CrossRefPubMedCentralPubMedGoogle Scholar
  56. Zaccarelli N, Bolnick DI, Mancinelli G (2013) RInSp: an R package for the analysis of individual specialization in resource use. Methods Ecol Evol 4:1018–1023. doi: 10.1111/2041-210x.12079 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Integrative BiologyOregon State UniversityCorvallisUSA
  2. 2.US Geological Survey, Western Ecological Research CenterLong Marine LaboratorySanta CruzUSA

Personalised recommendations