Resource availability affects individual niche variation and its consequences in group-living European badgers Meles meles

Abstract

Although intra-population variation in niches is a widespread phenomenon with important implications for ecology, evolution and management of a range of animal species, the causes and consequences of this variation remain poorly understood. We used stable isotope analysis to characterise foraging niches and to investigate the causes and consequences of individual niche variation in the European badger, a mustelid mammal that lives in territorial social groups, but forages alone. We found that the degree of individual niche variation within social groups was negatively related to the availability of farmland habitats, which represent an important foraging habitat for badgers; and was positively related to territory size, supporting the idea that resource limitation and ecological opportunity lead to increased individual specialisation. We also found that the degree of individual specialisation related to an individual’s body condition and that this effect varied with ecological context; such that specialisation had a stronger positive relationship with body condition in social groups with reduced availability of key farmland habitats. Body condition was also related to the utilisation of specific resources (woodland invertebrates), but again this relationship varied with the availability of farmland foraging habitats. This study supports the idea that resource availability plays an important role in determining patterns of individual niche variation, and identifies the potential adaptive consequences of specialised foraging strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958. doi:10.1111/j.1461-0248.2011.01662.x

    Article  PubMed  Google Scholar 

  2. Authier M, Dragon a-C, Richard P, Cherel Y, Guinet C (2012) O’ mother where wert thou? Maternal strategies in the southern elephant seal: a stable isotope investigation. Proc R Soc B Biol Sci 282:2681–2690. doi:10.1098/rspb.2012.0199

    Article  Google Scholar 

  3. Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Article  Google Scholar 

  4. Bodey TW, Bearhop S, Roy SS, Newton J, McDonald Ra (2010) Behavioural responses of invasive American mink Neovison vison to an eradication campaign, revealed by stable isotope analysis. J Appl Ecol 47:114–120. doi:10.1111/j.1365-2664.2009.01739.x

    Article  CAS  Google Scholar 

  5. Bolnick DI (2004) Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks. Evolution 58:608–618

    Article  PubMed  Google Scholar 

  6. Bolnick DI et al (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941

    Article  Google Scholar 

  7. Bolnick DI et al (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    Article  PubMed  Google Scholar 

  8. Bolnick DI, Svanbäck R, Araújo MS, Persson L (2007) Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc Natl Acad Sci 104:10075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bolnick DI et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192. doi:10.1016/j.tree.2011.01.009

    Article  PubMed Central  PubMed  Google Scholar 

  10. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ 15 N and Δ 13°C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453. doi:10.1111/j.1365-2664.2009.01620.x

    Article  CAS  Google Scholar 

  11. Chilvers B, Wilkinson I (2009) Diverse foraging strategies in lactating New Zealand sea lions. Mar Ecol Prog Ser 378:299–308. doi:10.3354/meps07846

    Article  Google Scholar 

  12. Crawford K, McDonald RA, Bearhop S (2008) Applications of stable isotope techniques to the ecology of mammals. Mamm Rev 38:87–107

    Article  Google Scholar 

  13. Cucherousset J, Acou A, Blanchet S, Britton JR, Beaumont WRC, Gozlan RE (2011) Fitness consequences of individual specialisation in resource use and trophic morphology in European eels. Oecologia 167:75–84. doi:10.1007/s00442-011-1974-4

    Article  PubMed  Google Scholar 

  14. Dall SRX, Bell AM, Bolnick DI, Ratnieks FLW, Sih A (2012) An evolutionary ecology of individual differences. Ecol Lett 15:1189–1198. doi:10.1111/j.1461-0248.2012.01846.x

    Article  PubMed Central  PubMed  Google Scholar 

  15. Darimont C, Paquet P, Reimchen T (2007) Stable isotopic niche predicts fitness of prey in a wolf-deer system. Biol J Linn Soc 90:125–138

    Article  Google Scholar 

  16. Darimont CT, Paquet PC, Reimchen TE (2009) Landscape heterogeneity and marine subsidy generate extensive intrapopulation niche diversity in a large terrestrial vertebrate. J Anim Ecol 78:126–133. doi:10.1111/j.1365-2656.2008.01473.x

    Article  PubMed  Google Scholar 

  17. Delahay RJ et al (2000) The use of marked bait in studies of the territorial organization of the European Badger (Meles meles). Mamm Rev 30:73–87. doi:10.1046/j.1365-2907.2000.00058.x

    Article  Google Scholar 

  18. Delahay RJ, Carter SP, Forrester GJ, Mitchell A, Cheeseman CL (2006) Habitat correlates of group size, bodyweight and reproductive performance in a high-density Eurasian badger (Meles meles) population. J Zool 270:437–447. doi:10.1111/j.1469-7998.2006.00165.x

    Article  Google Scholar 

  19. Deniro M, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506. doi:10.1016/0016-7037(78)90199-0

    Article  CAS  Google Scholar 

  20. Deniro M, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351. doi:10.1016/0016-7037(81)90244-1

    Article  CAS  Google Scholar 

  21. Devictor V et al (2010) Defining and measuring ecological specialization. J Appl Ecol 47:15–25. doi:10.1111/j.1365-2664.2009.01744.x

    Article  Google Scholar 

  22. Fontaine C, Collin CL, Dajoz I (2008) Generalist foraging of pollinators: diet expansion at high density. J Ecol 96:1002–1010. doi:10.1111/j.1365-2745.2008.01405.x

    Article  Google Scholar 

  23. Gelman A (2008) Scaling regression inputs by dividing by two standard deviations. Stat Med 27:2865–2873. doi:10.1002/sim

    Article  PubMed  Google Scholar 

  24. Golet G, Kuletz K, Roby D, Irons D (2000) Adult prey choice affects chick growth and reproductive success in pigeon guillemots. Auk 117:82–91

    Article  Google Scholar 

  25. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711. doi:10.1111/j.1420-9101.2010.02210.x

    Article  CAS  PubMed  Google Scholar 

  26. Haugen TO, Winfield IJ, Vøllestad LA, Fletcher JM, James JB, Stenseth NC (2006) The ideal free pike: 50 years of fitness-maximizing dispersal in Windermere. Proc Biol Sci R Soc 273:2917–2924. doi:10.1098/rspb.2006.3659

    Article  Google Scholar 

  27. Hofer H (1988) Variation in resource presence, utilization and reproductive success within a population of European Badgers (Meles meles). Mamm Rev 18:25–36. doi:10.1111/j.1365-2907.1988.tb00068.x

    Article  Google Scholar 

  28. Johnson CK et al (2009) Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. Proc Natl Acad Sci USA 106:2242–2247. doi:10.1073/pnas.0806449106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Katzner TE, Bragin EA, Knick ST, Smith AT (2005) Relationship between demographics and diet specificity of Imperial Eagles Aquila heliaca in Kazakhstan. Ibis 147:576–586

    Article  Google Scholar 

  30. Kobler A, Klefoth T, Mehner T, Arlinghaus R (2009) Coexistence of behavioural types in an aquatic top predator: a response to resource limitation? Oecologia 161:837–847. doi:10.1007/s00442-009-1415-9

    Article  PubMed  Google Scholar 

  31. Kruuk H (1978) Foraging and spatial organisation of the European badger, Meles meles L. Behav Ecol Sociobiol 4:75–89. doi:10.1007/BF00302562

    Article  Google Scholar 

  32. Kruuk H (1987) Changes in the size of groups and ranges of the European badger (Meles meles L.) in an area in Scotland. J Anim Ecol 56:351–364

    Article  Google Scholar 

  33. Kruuk H, Parish T, Brown C, Carrera J (1979) The use of pasture by the European badger (Meles meles). J Appl Ecol 16:453–459

    Article  Google Scholar 

  34. Layman CA, Quattrochi JP, Peyer CM, Allgeier JE, Suding K (2007) Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol Lett 10:937

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lecomte N, Ahlstrøm O, Ehrich D, Fuglei E, Ims Ra, Yoccoz NG (2011) Intrapopulation variability shaping isotope discrimination and turnover: experimental evidence in arctic foxes. PloS One 6:e21357. doi:10.1371/journal.pone.0021357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Macdonald D (1983) The ecology of carnivore social behaviour. Nature 301:379–384

    Article  Google Scholar 

  37. Macdonald DW, Stewart PD, Johnson PJ, Porkert J, Buesching C (2002) No evidence of social hierarchy amongst feeding badgers, Meles meles. Ethology 108:613–628. doi:10.1046/j.1439-0310.2002.00807.x

    Article  Google Scholar 

  38. Martin RA, Pfennig DW (2009) Disruptive selection in natural populations: the roles of ecological specialization and resource competition. Am Nat 174:268–281. doi:10.1086/600090

    Article  PubMed  Google Scholar 

  39. Matich P, Heithaus MR, Layman CA (2011) Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J Anim Ecol 80:294–305. doi:10.1111/j.1365-2656.2010.01753.x

    Article  PubMed  Google Scholar 

  40. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  41. Newsome SD et al (2009) Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90:961–974

    Article  PubMed  Google Scholar 

  42. Newsome SD et al (2010) Variation in delta 13°C and delta 15 N diet-vibrissae trophic discrimination factors in a wild population of California sea otters. Ecol Appl Publ Ecol Soc Am 20:1744–1752

    Google Scholar 

  43. Newsome SD, Yeakel JD, Wheatley PV, Tinker MT (2012) Tools for quantifying isotopic niche space and dietary variation at the individual and population level. J Mamm 93:329–341. doi:10.1644/11-MAMM-S-187.1

    Article  Google Scholar 

  44. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5:e9672. doi:10.1371/journal.pone.0009672

    Article  PubMed Central  PubMed  Google Scholar 

  45. Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891. doi:10.1111/j.1600-0706.2009.17643.x

    Article  Google Scholar 

  46. Persson L (1985) Optimal foraging: the difficulty of exploiting different feeding strategies simultaneously. Oecologia 67:338–341

    Article  Google Scholar 

  47. Phillips DL (2012) Converting isotope values to diet composition: the use of mixing models. J Mamm 93:342–352. doi:10.1644/11-MAMM-S-158.1

    Article  Google Scholar 

  48. Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52:137–154

    Article  Google Scholar 

  49. Revilla E (2001) Differences in key habitat use between dominant and subordinate animals: intraterritorial dominance payoffs in Eurasian badgers? Can J Zool 170:165–170

    Article  Google Scholar 

  50. Robertson A, Ra McDonald, Delahay RJ, Kelly SD, Bearhop S (2012) Whisker growth in wild Eurasian badgers Meles meles: implications for stable isotope and bait marking studies. Eur J Wildl Res. doi:10.1007/s10344-012-0679-2

    Google Scholar 

  51. Robertson A, McDonald R, Delahay R, Kelly S, Bearhop S (2014) Individual foraging specialisation in a social mammal: the European badger (Meles meles). Oecologia 176:409–421

    Article  PubMed  Google Scholar 

  52. Roper T (2010) Badger. HarperCollins, UK

  53. Sih A, Cote J, Evans M, Fogarty S, Pruitt J (2012) Ecological implications of behavioural syndromes. Ecol Lett 15:278–289. doi:10.1111/j.1461-0248.2011.01731.x

    Article  PubMed  Google Scholar 

  54. Svanbäck R, Bolnick DI (2005) Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol Ecol Res 7:993–1012

    Google Scholar 

  55. Svanbäck R, Bolnick DI (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc Biol Sci R Soc 274:839–844. doi:10.1098/rspb.2006.0198

    Article  Google Scholar 

  56. Svanbäck R, Persson L (2004) Individual diet specialization, niche width and population dynamics: implications for trophic polymorphisms. J Anim Ecol 73:973–982

    Article  Google Scholar 

  57. Svanbäck R, Persson L (2009) Population density fluctuations change the selection gradient in Eurasian perch. Am Nat 173:507–516. doi:10.1086/597223

    Article  PubMed  Google Scholar 

  58. Tinker MT, Bentall G, Estes JA (2008) Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proc Natl Acad Sci 105:560–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Tinker MT, Mangel M, Estes JA (2009) Learning to be different: acquired skills, social learning, frequency dependence, and environmental variation can cause behaviourally mediated foraging specializations. Evol Ecol Res 11:841–869

    Google Scholar 

  60. Tinker TM et al (2012) Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecol Lett 15:475–483. doi:10.1111/j.1461-0248.2012.01760.x

    Article  Google Scholar 

  61. van de Pol M, Brouwer L, Ens BJ, Oosterbeek K, Tinbergen JM (2009) Fluctuating selection and the maintenance of individual and sex-specific diet specialization in free-living oystercatchers. Evolution 64:836–851. doi:10.1111/j.1558-5646.2009.00859.x

    PubMed  Google Scholar 

  62. Violle C et al (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252. doi:10.1016/j.tree.2011.11.014

    Article  PubMed  Google Scholar 

  63. Votier SC, Bearhop S, Ratcliffe N, Furness RW (2004) Reproductive consequences for great skuas specializing as seabird predators. Condor 106:275–287. doi:10.1650/7261

  64. Warton D, Hui F (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  65. Whitfield D, Reid R, Haworth P, Madders M (2009) Diet specificity is not associated with increased reproductive performance of golden eagles Aquila chrysaetos in Western Scotland. Ibis 151:255–264

    Article  Google Scholar 

  66. Woo K, Elliott K, Davidson M, Gaston AJ (2008) Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. J Anim Ecol 77:1082–1091

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the National Wildlife Management Centre’s Woodchester Park field team for carrying out the trapping and sampling of badgers to obtain whiskers for the purposes of this study. We would also like to thank Gareth Rees for his help with the stable isotope analysis. Work involving live badgers was carried out under a UK Home Office licence, in accordance with the Animals (Scientific Procedures) Act 1986, and was subject to a University ethical review process. This research was funded by the European Social Fund (ESF). The longer-term Woodchester Park study is supported by the UK Department for Environment, Food and Rural Affairs. SB is funded by an EU consolidator’s grant: STATEMIG 310820.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Andrew Robertson or Stuart Bearhop.

Additional information

Communicated by Christian Voigt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robertson, A., McDonald, R.A., Delahay, R.J. et al. Resource availability affects individual niche variation and its consequences in group-living European badgers Meles meles . Oecologia 178, 31–43 (2015). https://doi.org/10.1007/s00442-014-3202-5

Download citation

Keywords

  • Individual specialisation
  • Stable isotope analysis
  • Meles meles
  • Niche variation
  • Resource competition