Abstract
Many ecologically generalized populations are composed of relatively specialized individuals that selectively consume a subset of their population’s diet, a phenomenon known as ‘individual specialization’. The Niche Variation Hypothesis posits that this individual specialization can arise during ecological release if niche expansion occurs mainly through diet divergence among individuals, leading to greater morphological variation. Most tests of this hypothesis have searched for correlations between niche width and morphological variance, but this approach rests on the untested assumption that within-population morphological diversity is highly correlated with ecological diversity. Here, we test whether intrapopulation diet variation is correlated with intrapopulation morphological variation, across 12 lacustrine populations of three-spine stickleback. First, we use behavioral observations, isotopes, and gut contents to show that, within populations, individuals differ in microhabitat use and diet. Second, we show that some populations exhibit more diet variation than others, as evidenced by differences in both isotopic and gut content variation among individuals. Finally, we confirm that populations with greater dietary variation are more morphologically variable. However, this relationship is only significant when total morphological variance is examined, not for individual morphological traits. This discordance may reflect among-population differences in the relationship between individual morphology and diet. Because morphology–diet relationships can differ among populations, morphological variance may be a poor predictor of actual diet variation when diverse populations are being compared.
Similar content being viewed by others
References
Ackermann M, Doebeli M (2004) Evolution of niche width and adaptive diversification. Evolution 58:2599–2612. doi:10.1111/j.0014-3820.2004.tb01614.x
Agashe D (2009) The stabilizing effect of intraspecific genetic variation on population dynamics in novel and ancestral habitats. Am Nat 174:255–267. doi:10.1086/600085
Araújo M, Bolnick DI, Machardo G, Giaretta A, dos Reis SF (2007) Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152:643–654. doi:10.1007/s00442-007-0687-1
Araújo MS, Guimaraes PRJ, Svanbäck R, Pinheiro A, dos Reis SF, Bolnick DI (2008) Network analysis reveals contrasting effects of intraspecific competition on individual versus population diets. Ecology 98:1981–1993. doi:10.1890/07-0630.1
Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialization. Ecol Lett 14:948–958. doi:10.1111/j.1461-0248.2011.01662.x
Bassar RD, Marshall MC, Lopez-Sepulcre A, Zandona E, Auer SK, Travis J, Pringle CM, Flecker AS, Thomas SA, Fraser DF, Reznick DN (2010) Local adaptation in Trinidadian guppies alters ecosystem processes. Proc Natl Acad Sci USA 107:3616–3621. doi:10.1073/pnas.0908023107
Bassar RD, Ferriere R, Lopez-Sepulcre A, Marshall MC, Travis J, Pringle CM, Reznick DN (2012) Direct and indirect ecosystem effects of evolutionary adaptation in the Trinidadian guppy (Poecilla reticulata). Am Nat 180:167–185. doi:10.1086/666611
Becks L, Ellner SP, Jones LE, Hairston NG Jr (2010) Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecol Lett 13:989–997. doi:10.1111/j.1461-0248.2010.01490.x
Bell AM (2005) Behavioral differences between individuals and two populations of sticklebacks (Gasterosteus aculeatus). J Evol Biol 18:464–473. doi:10.1111/j.1420-9101.2004.00817.x
Bell MA, Foster SA (1994) The evolutionary biology of the threespine stickleback. Oxford University Press, New York
Bentzen P, McPhail JD (1984) Ecology and evolution of sympatric sticklebacks (Gasterosteus): specialization for alternative trophic niches in the Enos Lake species pair. Can J Zool 62:2280–2286. doi:10.1139/z84-331
Berner D, Stutz WE, Bolnick DI (2010) Diversification in phenotypic (co)variances among lacustrine populations of threespine stickleback. Evolution 64:2265–2277. doi:10.1111/j.1558-5646.2010.00982.x
Bolnick DI, Araújo MS (2011) Partitioning the relative fitness effects of diet and trophic morphology in threespine stickleback. Evol Ecol Res 13(439):459
Bolnick DI, Lau OL (2008) Predictable patterns of disruptive selection in stickleback in postglacial lakes. Am Nat 172:1–11. doi:10.1086/587805
Bolnick DI, Paull J (2009) Diet similarity declines with morphological distance between conspecific individuals. Evol Ecol Res 11:1217–1233
Bolnick DI, Yang LH, Fordyce JA, Davis JA, Svanbäck R (2002) Measuring individual-level trophic specialization. Ecology 83:2936–2941
Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forrister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28. doi:10.1086/343878
Bolnick DI, Svanback R, Araújo M, Persson L (2007) More generalized populations are also more heterogeneous: comparative support for the niche variation hypothesis. Proc Natl Acad Sci USA 104:10075–10079. doi:10.1073/pnas.0703743104
Bolnick DI, Caldera E, Matthews B (2008) Evidence for asymmetric migration load in a pair of ecologically divergent lacustrine stickleback populations. Biol J Linn Soc 94:373–387. doi:10.1111/j.1095-8312.2008.00978.x
Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, Paull JE (2010) Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc R Soc B 277:1789–1797. doi:10.1098/rspb.2010.0018
Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192. doi:10.1016/j.tree.2011.01.009
Bryan JE, Larkin PA (1972) Food specialization by individual trout. J Fish Res Board Can 29:1615–1624. doi:10.1139/f72-248
Costa GC, Mesquita DO, Colli GR, Vitt LJ (2008) Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? Am Nat 172:868–877. doi:10.1086/592998
Dalerum F, Angerbjörn A (2005) Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144:647–658. doi:10.1007/s00442-005-0118-0
Dall SRX, Bell AM, Bolnick DI, Ratnieks FLW (2012) An evolutionary ecology of individual differences. Ecol Lett 15:1189–1198. doi:10.1111/j.1461-0248.2012.01846.x
Day T, Pritchard J, Schluter D (1994) A comparison of two sticklebacks. Evolution 48:1723–1734. doi:10.2307/2410260
Doebeli M (1996) Quantitative genetics and population dynamics. Evolution 50:532–546. doi:10.2307/2410829
Doebeli M (1997) Genetic variation and the persistence of predator-prey interactions in the Nicholson–Bailey model. J Theor Biol 188:109–120. doi:10.1006/jtbi.1997.0454
Fox GA, Kendall BE (2002) Demographic stochasticity and the variance reduction effect. Ecology 83:1928–1934. doi:10.2307/3071775
France R (1995) Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol Oceanogr 40:1310–1313. doi:10.4319/lo.1995.40.7.1310
Grant PR, Price TD (1981) Population variation in continuously varying traits as an ecological genetics problem. Am Zool 21:795–811. doi:10.1093/icb/21.4.795
Harmon LJ, Matthews B, DesRoches S, Chase J, Shurin J, Schluter D (2009) Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458:1167–1170. doi:10.1038/nature07974
Hobson KA (1993) Trophic relationship among high Arctic seabirds: insights from tissue-dependent stable-isotope models. Mar Ecol Prog Ser 95:7–18. doi:10.3354/meps095007
Hobson KA, Clark RG (1992a) Assessing avian diets using stable isotopes I: turnover in δ13C in tissues. Condor 94:181–188. doi:10.2307/1368807
Hobson KA, Clark RG (1992b) Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor 94:189–197. doi:10.2307/1368808
Ingram T, Svanbäck R, Kraft NJB, Kratin P, Southcott L, Schluter D (2012) Intraguild predation drives evolutionary niche shift in threespine stickleback. Evolution 66:1819–1832. doi:10.1111/j.1558-5646.2011.01545.x
Langerhans RB, DeWitt T (2004) Shared and unique features of evolutionary diversification. Am Nat 164:335–349. doi:10.1086/422857
Lavin PA, McPhail JD (1985) The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): site-specific differentiation of trophic morphology. Can J Zool 83:2632–2638. doi:10.1139/z85-393
Lavin PA, McPhail JD (1986) Adaptive divergence of trophic phenotype among freshwater populations of the threespine stickleback (Gasterosteus aculeatus). Can J Fish Aq Sci 43:2455–2465. doi:10.1139/f86-305
Matthews B, Mazumder A (2004) A critical evaluation of intrapopulation variation of δ13C and isotopic evidence of individual specialization. Oecologia 140:361–371. doi:10.1007/s00442-004-1579-2
Matthews B, Mazumder A (2005) Consequences of large temporal variability of zooplankton δ15N for modeling fish trophic position and variation. Limnol Oceanogr 50:1404–1414. doi:10.4319/lo.2005.50.5.1404
Matthews B, Marchinko KB, Bolnick DI, Mazumder A (2010) Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation. Ecology 91:1025–1034. doi:10.1890/09-0235.1
Meyer A (1987) Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41:1357–1369. doi:10.2307/2409100
Newsome SD, del Rio CM, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436. doi:10.1890/060150.1
Okuyama T (2008) Individual behavioral variation in predator-prey models. Ecol Res 23:665–671. doi:10.1007/s11284-007-0425-5
Palkovacs EP, Post DM (2009) Experimental evidence that phenotypic divergence in predators drives community divergence in prey. Ecology 90:300–305. doi:10.1890/08-1673.1
Pelletier F, Garant D, Hendry AP (2009) Eco-evolutionary dynamics. Phil Trans R Soc B 364:1483–1489. doi:10.1098/rstb.2009.0027
Persson L (1985) Optimal foraging: the difficulty of exploiting different feeding strategies simultaneously. Oecologia 67:338–341. doi:10.1007/BF00384938
Polis GA (1984) Age structure component of niche width and intraspecific resource partitioning—can age-groups function as ecological species. Am Nat 123:541–564. doi:10.1086/284221
Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718. doi:10.2307/3071875
Post DM, Palkovacs EP (2009) Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Phil Trans R Soc B 364:1629–1640. doi:10.1098/rstb.2009.0012
R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org/
Reimchen TE, Nosil P (2001a) Dietary differences between phenotypes with symmetrical and asymmetrical pelvis in the stickleback Gasterosteus aculeatus. Can J Zool 79:533–539. doi:10.1139/z01-006
Reimchen TE, Nosil P (2001b) Ecological causes of sex-biased parasitism in threespine stickleback. Biol J Linn Soc 73:51–63. doi:10.1006/bijl.2001.0523
Reimchen TE, Ingram T, Hansen SC (2008) Assessing niche differences of sex, armour and asymmetry phenotypes using stable isotope analyses in Haida Gwaii sticklebacks. Behaviour 145:561–577. doi:10.1163/156853908792451449
Robinson BW (2000) Trade offs in habitat-specific foraging efficiency and the nascent adaptive divergence of sticklebacks in lakes. Behavior 137:865–888. doi:10.1163/156853900502501
Roughgarden J (1972) Evolution of niche width. Am Nat 106:683–718. doi:10.1086/282807
Saloniemi I (1993) Acoevolutionary predator-prey model with quantitative characters. Am Nat 141:880–896. doi:10.1086/285514
Vepsalainen K, Savolainen R (2003) Sympatric speciation through intraspecific social parasitism. Proc Natl Acad Sci USA 100:7169–7174. doi:10.1073/pnas.1036825100
Schluter D, McPhail JD (1992) Ecological character displacement and speciation in sticklebacks. Am Nat 140:85–108. doi:10.1086/285404
Schoener TW (1982) The controversy over intraspecific competition. Am Sci 70:586–595
Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429. doi:10.1126/science.1193954
Schreiber SJ, Bürger R, Bolnick DI (2011) The community effects of phenotypic and genetic variation within a predator population. Ecology 92:1582–1593. doi:10.1890/10-2071.1
Sharpe DMT, Räsänen K, Berner D, Hendry AP (2008) Genetic and environmental contributions to the morphology of lake and stream stickleback: implications for gene flow and reproductive isolation. Evol Ecol Res 10:849–866
Smith TB, Skulason S (1996) Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annu Rev Ecol Syst 27:111–133. doi:10.1146/annurev.ecolsys.27.1.111
Snowberg L, Bolnick DI (2008) Assortative mating by diet in a phenotypically unimodal but ecologically variable population of stickleback. Am Nat 172:733–739. doi:10.1086/591692
Svanbäck R, Bolnick DI (2007) Intraspecific competition promotes resource use diversity within a natural population. Proc R Soc B 274:839–844. doi:10.1089/rspb.2006.0198
Svanbäck R, Eklöv P (2002) Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131:61–70. doi:10.1007/s00442-001-0861-9
Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications fo δ13C analysis of diet. Oecologia 57:32–37. doi:10.1007/BF00379558
Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–389. doi:10.1086/282379
Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York
Wilson DS (1998) Adaptive individual differences within single populations. Phil Trans R Soc B 353:199–205. doi:10.1098/rstb.1998.0202
Zaccarelli N, Bolnick DI, Mancinelli G (2013) RInsp: an R package for the analysis of intra-specific variation in resource use. Methods Ecol Evol 4:1018–1023. doi:10.111/2041-210X.12079
Acknowledgments
We thank Tania Tasneem and On Lee Lau for help in collecting survey fish. Chris Harrison and Bob Rodbumrung assisted with the setup of the microhabitat enclosure. Rose Carlson assisted with the functional morphology measurements on recaptured enclosure fish. This work was funded by National Science Foundation DEB-0412808 and a David and Lucille Packard Foundation fellowship to DIB. LKS was supported by a National Science Foundation Graduate Research Fellowship.
Conflict of interest
The authors declare no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Craig A. Layman.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Snowberg, L.K., Hendrix, K.M. & Bolnick, D.I. Covarying variances: more morphologically variable populations also exhibit more diet variation. Oecologia 178, 89–101 (2015). https://doi.org/10.1007/s00442-014-3200-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00442-014-3200-7