Advertisement

Oecologia

, Volume 178, Issue 1, pp 207–218 | Cite as

Morphological variation and different branch modularity across contrasting flow conditions in dominant Pocillopora reef-building corals

  • David A. Paz-García
  • Alejandro Aldana-Moreno
  • Rafael A. Cabral-Tena
  • Francisco J. García-De-León
  • Michael E. Hellberg
  • Eduardo F. BalartEmail author
Population ecology - Original research

Abstract

Pocillopora corals, the dominant reef-builders in the Eastern Tropical Pacific, exhibit a high level of phenotypic plasticity, making the interpretation of morphological variation and the identification of species challenging. To test the hypothesis that different coral morphospecies represent phenotypes that develop in different flow conditions, we compared branch characters in three Pocillopora morphospecies (P. damicornis, P. verrucosa, and P. meandrina) from two communities in the Gulf of California exposed to contrasting flow conditions. Morphological variation and branch modularity (i.e., the tendency of different sets of branch traits to vary in a coordinated way) were assessed in colonies classified as Pocillopora type 1 according to two mitochondrial regions. Our results can be summarized as follows. (1) Pocillopora type 1 morphospecies corresponded to a pattern of morphological variation in the Gulf of California. Overall, P. damicornis had the thinnest branches and its colonies the highest branch density, followed by P. verrucosa, and then by P. meandrina, which had the thickest branches and its colonies the lowest branch density. (2) The differentiation among morphospecies was promoted by different levels of modularity of traits. P. verrucosa had the highest coordination of traits, followed by P. damicornis, and P. meandrina. (3) The variation and modularity of branch traits were related to water flow condition. Morphology under the high-flow condition was more similar among morphospecies than under the low-flow condition and seemed to be related to mechanisms for coping with these conditions. Our results provide the first evidence that in scleractinian corals different levels of modularity can be promoted by different environmental conditions.

Keywords

Phenotypic modularity Morphometrics Pocillopora morphospecies Phenotypic plasticity Easter Tropical Pacific Mitochondrial lineage 

Notes

Acknowledgments

We thank David Vega, Fernando Aranceta, Pedro González, and Mario Cota of CIBNOR, Saúl González and Salwa El Khattabi of UABCS, Angélica Campos and José Meléndez of CICIMAR for field assistance, and Noemí Bocanegra Castillo of CIBNOR for laboratory assistance. We thank John E. N. Veron, Peter W. Glynn, Jorge Cortés, Héctor Reyes Bonilla, and Andrés López Pérez for their corroboration of species. We are grateful to Johanna H. Rosman and Todd C. LaJeunesse for their comments of an earlier version of the manuscript. We also thank the editors and anonymous reviewers for their helpful comments and suggestions. Ira Fogel of CIBNOR provided editorial services. Funding was provided by CONACYT (grant 157993) to EFB and 2011 UNESCO-MAB Young Scientists to DAPG. DAPG, RACT, and AAM are recipients of student fellowships from CONACYT (160065, 212435, and 236332, respectively).

Supplementary material

442_2014_3199_MOESM1_ESM.pdf (305 kb)
Supplementary material 1 (PDF 304 kb)

References

  1. Aranceta-Garza F, Balart EF, Reyes-Bonilla H, Cruz-Hernández P (2012) Effect of tropical storms on sexual and asexual reproduction in coral Pocillopora verrucosa subpopulations in the Gulf of California. Coral Reefs 31:1157–1167CrossRefGoogle Scholar
  2. Bruno JF, Edmunds PJ (1998) Metabolic consequences of phenotypic plasticity in the coral Madracis mirabilis (Duchassaing and Michelotti): the effect of morphology and water flow on aggregate respiration. J Exp Mar Biol Ecol 229:187–195CrossRefGoogle Scholar
  3. Budd AF (1990) Long term patterns of morphological variation within and among species of reef-corals and their relationship to sexual reproduction. Syst Bot 15:150–165CrossRefGoogle Scholar
  4. Cantera JR, von Prahl H, Escobar JC, Peña E (1989) Sistemática de los corales del género Pocillopora del pacífico colombiano utilizando taxonomía numérica. Rev Biol Trop 37:23–28Google Scholar
  5. Carlon DB, Budd AF (2002) Incipient speciation across a depth gradient in a scleractinian coral? Evolution 56:2227–2242CrossRefPubMedGoogle Scholar
  6. Chamberlain JA, Graus RR (1975) Water flow and hydromechanical adaptations of branched reef corals. Bull Mar Sci 25:112–125Google Scholar
  7. Chindapol N, Kaandorp Ja, Cronemberger C, Mass T, Genin A (2013) Modelling growth and form of the scleractinian coral Pocillopora verrucosa and the influence of hydrodynamics. PLoS Comput Biol 9:e1002849CrossRefPubMedCentralPubMedGoogle Scholar
  8. De Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005) A modular concept of phenotypic plasticity in plants. New Phytol 166:73–82CrossRefPubMedGoogle Scholar
  9. Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J et al (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174CrossRefGoogle Scholar
  10. Eytan RI, Hayes M, Arbour-Reily P, Miller M, Hellberg ME (2009) Nuclear sequences reveal mid-range isolation of an imperiled deep-water coral population. Mol Ecol 18:2375–2389CrossRefPubMedGoogle Scholar
  11. Falter JL, Atkinson MJ, Merrifield MA (2004) Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol Oceanogr 49:1820–1831CrossRefGoogle Scholar
  12. Filatov MV, Kaandorp JA, Postma M, van Liere R, Kruszyński KJ et al (2010) A comparison between coral colonies of the genus Madracis and simulated forms. Proc Biol Sci 277:3555–3561CrossRefPubMedCentralPubMedGoogle Scholar
  13. Finelli C, Helmuth B, Pentcheff N, Wethey D (2007) Intracolony variability in photosynthesis by corals is affected by water flow: role of oxygen flux. Mar Ecol Prog Ser 349:103–110CrossRefGoogle Scholar
  14. Flot J-F, Magalon H, Cruaud C, Couloux A, Tillier S (2008) Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. C R Biol 331:239–247CrossRefPubMedGoogle Scholar
  15. Flot J-F, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372CrossRefPubMedCentralPubMedGoogle Scholar
  16. Forsman ZH, Johnston EC, Brooks AJ, Adam TC, Toonen RJ (2013) Genetic Evidence for Regional Isolation of Pocillopora Corals from Moorea. Oceanography 26:153–155. doi: 10.5670/oceanog.2013.58.#sthash.dSpISpvb.6S9U1VAN.dpuf CrossRefGoogle Scholar
  17. Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Introduction. Philos Trans R Soc Lond B Biol Sci 365:547–556CrossRefPubMedCentralPubMedGoogle Scholar
  18. Glynn PW (1999) Pocillopora inflata, a new species of scleractinian coral (Cnidaria: Anthozoa) from the Tropical Eastern Pacific. Pac Sci 53:168–180Google Scholar
  19. Glynn PW, Ault JS (2000) A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs 19:1–23CrossRefGoogle Scholar
  20. Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24CrossRefPubMedCentralPubMedGoogle Scholar
  21. Huber H, Kane NC, Heschel MS, von Wettberg EJ, Banta J et al (2004) Frequency and microenvironmental pattern of selection on plastic shade-avoidance traits in a natural population of Impatiens capensis. Am Nat 163:548–563CrossRefPubMedGoogle Scholar
  22. Kaandorp JA (1999) Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol 134:295–306CrossRefGoogle Scholar
  23. Kaniewska P, Anthony KRN, Hoegh-Guldberg O (2008) Variation in colony geometry modulates internal light levels in branching corals, Acropora humilis and Stylophora pistillata. Mar Biol 155:649–660CrossRefGoogle Scholar
  24. Ketchum JT, Reyes-Bonilla H (2001) Taxonomía y distribución de los corales hermatípicos (Scleractinia) del Archipiélago de Revillagigedo, México. Rev Biol Trop 49:803–848PubMedGoogle Scholar
  25. Klingenberg CP (2008) Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst 39:115–132CrossRefGoogle Scholar
  26. Klingenberg CP (2014) Studying morphological integration and modularity at multiple levels: concepts and analysis. Phil Trans R Soc B 369: 20130249.Google Scholar
  27. LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054Google Scholar
  28. Langerhans RB, Layman CA, Langerhans AK, Dewitt TJ (2003) Habitat-associated morphological divergence in two Neotropical fish species. Biol J Linnean Soc 80:689–698CrossRefGoogle Scholar
  29. Magwene PM (2001) New tools for studying integration and modularity. Evolution 55:1734–1745CrossRefPubMedGoogle Scholar
  30. Marti-Puig P, Forsman Z, Haverkort-Yeh R, Knapp I, Maragos J, Toonen R (2014) Extreme phenotypic polymorphism in Pocillopora (Anthozoa: Scleractinia); corallite morphology corresponds to mitochondrial groups, while taxonomy based on colony morphology does not. Bull Mar Sci 90:211–231CrossRefGoogle Scholar
  31. Mass T, Genin A (2008) Environmental versus intrinsic determination of colony symmetry in the coral Pocillopora verrucosa. Mar Ecol Prog Ser 369:131–137CrossRefGoogle Scholar
  32. Mass T, Genin A, Shavit U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proc Natl Acad Sci USA 107:2527–2531CrossRefPubMedCentralPubMedGoogle Scholar
  33. McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012) Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Mar Ecol Prog Ser 462:1–7CrossRefGoogle Scholar
  34. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200CrossRefPubMedGoogle Scholar
  35. Muus B (1968) A field method for measuring “exposure” by means of plaster balls: a preliminary account. Sarsia 34:61–68Google Scholar
  36. Nakamura T, Yamasaki H (2005) Requirement of water-flow for sustainable growth of Pocilloporid corals during high temperature periods. Mar Pollut Bull 50:1115–1120CrossRefPubMedGoogle Scholar
  37. Nakamura T, Yamasaki H (2006) Morphological changes of pocilloporid corals exposed to water flow. Proc 10th Int Coral Reef Symp 875:872–875Google Scholar
  38. Paz-García DA, Reyes-Bonilla H (2006) Temporal variation in the regeneration rate of artificial lesions in two morphotypes of Porites panamensis. Cienc Mar 32:187–194Google Scholar
  39. Paz-García DA, Balart EF, García-de-Léon FJ (2012) Cold water bleaching of Pocillopora in the Gulf of California. In: Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012. 9A Coral bleaching and climate changeGoogle Scholar
  40. Pettay DT, Wham DC, Pinzón JH, LaJeunesse TC (2011) Genotypic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Mol Ecol 20:5197–5212CrossRefPubMedGoogle Scholar
  41. Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD et al (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467CrossRefPubMedGoogle Scholar
  42. Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367CrossRefPubMedGoogle Scholar
  43. Pinzón JH, LaJeunesse TC (2011) Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20:311–325CrossRefPubMedGoogle Scholar
  44. Pinzón JH, Reyes-Bonilla H, Baums IB, LaJeunesse TC (2012) Contrasting clonal structure among Pocillopora (Scleractinia) communities at two environmentally distinct sites in the Gulf of California. Coral Reefs 31:765–777CrossRefGoogle Scholar
  45. Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA et al (2013) Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr 40:1595–1608CrossRefGoogle Scholar
  46. Porter ET, Sanford LP, Suttles SE (2000) Gypsum dissolution is not a universal integrator of water motion. Limnol Oceanogr 45:145–158CrossRefGoogle Scholar
  47. Powers D (1970) A numerical taxonomic study of Hawaiian reef corals. Pacific Sci 24:180–186Google Scholar
  48. Powers DA, Rohlf FJ (1972) A numerical taxonomic study of Caribbean and Hawaiian reef coral. Syst Zool 21:53–64CrossRefGoogle Scholar
  49. Prada C, Schizas NV, Yoshioka PM (2008) Phenotypic plasticity or speciation? A case from a clonal marine organism. BMC Evol Biol 8:47. doi: 10.1186/1471-2148-8-47 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Reyes-Bonilla H (1992) New records for hermatypic corals (Anthozoa: Scleractinia) in the Gulf of California, Mexico, with an historical and biogeographical discussion. J Nat Hist 26:1163–1175CrossRefGoogle Scholar
  51. Roberson L, Coyer J (2004) Variation in blade morphology of the kelp Eisenia arborea: incipient speciation due to local water motion? Mar Ecol Prog Ser 282:115–128CrossRefGoogle Scholar
  52. Ryaland JS, Warner GF (1986) Growth and form in modular animals: ideas on the size and arrangement of zooids. Phil Trans R Soc B Biol Sci 313:53–76CrossRefGoogle Scholar
  53. Sánchez JA, Lasker HR (2003) Patterns of morphological integration in marine modular organisms: supra-module organization in branching octocoral colonies. Proc Biol Sci 270:2039–2044CrossRefPubMedCentralPubMedGoogle Scholar
  54. Sánchez JA, Aguilar C, Dorado D, Manrique N (2007) Phenotypic plasticity and morphological integration in a marine modular invertebrate. BMC Evol Biol 7:122CrossRefPubMedCentralPubMedGoogle Scholar
  55. Schmidt-Roach S, Lundgren P, Miller KJ, Gerlach G, Noreen AME, Andreakis N (2013) Assessing hidden species diversity in the coral Pocillopora damicornis from Eastern Australia. Coral Reefs 32:161–172CrossRefGoogle Scholar
  56. Schutter M, Kranenbarg S, Wijffels RH, Verreth J, Osinga R (2011) Modification of light utilization for skeletal growth by water flow in the scleractinian coral Galaxea fascicularis. Mar Biol 158:769–777CrossRefGoogle Scholar
  57. Sebens K, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol 211:1–28CrossRefGoogle Scholar
  58. Sebens KP, Grace SP, Helmuth B, Maney EJ Jr, Miles JS (1998) Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a field enclosure. Mar Biol 131:347–360CrossRefGoogle Scholar
  59. Sebens KP, Helmuth B, Carrington E, Agius B (2003) Effects of water flow on growth and energetics of the scleractinian coral Agaricia tenuifolia in Belize. Coral Reefs 22:35–47. doi: 10.1007/s00338-003-0277-6 Google Scholar
  60. Shaish L, Abelson A, Rinkevich B (2007) How plastic can phenotypic plasticity be? The branching coral Stylophora pistillata as a model system. PLoS One 2:e644CrossRefPubMedCentralPubMedGoogle Scholar
  61. Shearer TL, Van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487CrossRefPubMedGoogle Scholar
  62. Souter P (2010) Hidden genetic diversity in a key model species of coral. Mar Biol 157:875–885CrossRefGoogle Scholar
  63. Stat M, Baker AC, Bourne DG, Correa AMS, Forsman Z, Huggett M, Pochon X, Skillings D, Toonen R, van Oppen MJH, Gates RD (2012) Molecular delineation of species in the coral holobiont. Adv Mar Biol 63:1–65Google Scholar
  64. Stefani F, Benzoni F, Pichon M, Cancelliere C, Galli P (2008) A multidisciplinary approach to the definition of species boundaries in branching species of the coral genus Psammocora (Cnidaria, Scleractinia). Zool Scr 37:1463–6409Google Scholar
  65. Stewart HL, Carpenter RC (2003) The effects of morphology and water flow on photosynthesis of marine macroalgae. Ecology 84:2999–3012CrossRefGoogle Scholar
  66. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121
  67. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 CrossRefPubMedCentralPubMedGoogle Scholar
  68. Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337CrossRefPubMedGoogle Scholar
  69. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115Google Scholar
  70. Veron JEN (1995) Corals in space and time: biogeography and evolution of the Scleractinia. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  71. Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  72. Veron JEN (2002) New species described in corals of the world. Aust Inst Mar Sci Monogr Ser 11:1–206Google Scholar
  73. Veron JEN, Pichon M (1976) Scleractinia of eastern Australia, part I. Families Thamnasteridae, Astrocoeniidae, Pocilloporidae. Aust Inst Mar Sci, Monogr Ser 1:1–86Google Scholar
  74. Zhang Y-Y, Fischer M, Colot V, Bossdorf O (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol 197:314–322CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • David A. Paz-García
    • 1
    • 2
  • Alejandro Aldana-Moreno
    • 1
  • Rafael A. Cabral-Tena
    • 1
  • Francisco J. García-De-León
    • 2
  • Michael E. Hellberg
    • 3
  • Eduardo F. Balart
    • 1
    Email author
  1. 1.Laboratorio de Necton y Ecología de Arrecifes Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR)La PazMexico
  2. 2.Laboratorio de Genética para la ConservaciónCentro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR)La PazMexico
  3. 3.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations