Oecologia

, Volume 177, Issue 3, pp 775–784 | Cite as

Effects of predation risk across a latitudinal temperature gradient

Community ecology - Original research

Abstract

The nonconsumptive effects (NCEs) of predators on prey behavior and physiology can influence the structure and function of ecological communities. However, the strength of NCEs should depend on the physiological and environmental contexts in which prey must choose between food and safety. For ectotherms, temperature effects on metabolism and foraging rates may shape these choices, thereby altering NCE strength. We examined NCEs in a rocky intertidal food chain across a latitudinal sea surface temperature gradient within the Gulf of Maine. The NCEs of green crabs (Carcinus maenas) on the foraging, growth, and growth efficiency of prey snails (Nucella lapillus) were consistent across a broad (~8.5 °C) temperature range, even though snails that were transplanted south consumed twice as many mussels (Mytilus edulis) and grew twice as much as snails that were transplanted north. The positive effects of warmer temperatures in the south allowed snails under high risk to perform similarly to or better than snails under low risk at cooler temperatures. Our results suggest that for prey populations residing at temperatures below their thermal optimum, the positive effects of future warming may offset the negative effects of predation risk. Such effects may be favorable to prey populations facing increased predation rates due to warmer temperatures associated with climate change. Attention to the direct and indirect effects of temperature on species interactions should improve our ability to predict the effects of climate change on ecological communities.

Keywords

Growth efficiency Nonconsumptive effect Nucella lapillus Thermal performance Trait-mediated interactions 

Notes

Acknowledgments

We thank S. June, S. Donelan, E. Forbes, K. McClure, and A. Milanese for assistance with the experiment and K. Jans for access to the field site in Lubec, Maine. This study is part of the PhD dissertation of CMM and was generously supported by the National Science Foundation through a Doctoral Dissertation Improvement Grant (IOS-1110675), grants OCE-0648525 and 0727628 to GCT, and OCE-0963010 to GCT et al. as part of the Academic Research Infrastructure Recovery and Reinvestment Program. This is contribution #320 from the Marine Science Center. The authors have no conflicts of interest to declare.

Supplementary material

442_2014_3156_MOESM1_ESM.pdf (2.5 mb)
Supplementary material 1 (PDF 2573 kb)

References

  1. Abrams PA, Menge BA, Mittelbach GG, Spiller D, Yodzis P (1996) The role of indirect effects in food webs. In: Polis GA, Winemiller K (eds) Food webs: dynamics and structure. Chapman and Hall, New York, pp 371–395CrossRefGoogle Scholar
  2. Angilletta MJ, Dunham AE (2003) The temperature size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162:332–342. doi: 10.1086/377187 CrossRefPubMedGoogle Scholar
  3. Angilletta MJ, Wilson RS, Navas CA, James RS (2003) Tradeoffs and the evolution of thermal reaction norms. Trends Ecol Evol 18:234–240. doi: 10.1016/S0169-5347(03)00087-9 CrossRefGoogle Scholar
  4. Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509. doi: 10.1093/icb/44.6.498 CrossRefPubMedGoogle Scholar
  5. Bayne BL (1976) Marine mussels, their ecology and physiology. Cambridge University Press, New YorkGoogle Scholar
  6. Bayne B, Scullard C (1978) Rates of feeding by Thais (Nucella) lapillus (L.). J Exp Mar Biol Ecol 32:113–129. doi: 10.1016/0022-0981(78)90110-7 CrossRefGoogle Scholar
  7. Bertness MD, Leonard GH (1997) The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976–1989. doi: 10.2307/2265938 CrossRefGoogle Scholar
  8. Bertness M, Trussell G, Ewanchuk PJ, Silliman BR, Crain CM (2004) Consumer-controlled community states on Gulf of Maine rocky shores. Ecology 85:1321–1331. doi: 10.1890/02-0636 CrossRefGoogle Scholar
  9. Bolnick D, Preisser EL (2005) Resource competition modifies the strength of trait-mediated predator-prey interactions: a meta-analysis. Ecology 86:2771–2779CrossRefGoogle Scholar
  10. Boonstra R, Hik D, Singleton GR, Tinnikov A (1998) The impact of predator-induced stress on the snowshoe hare cycle. Ecol Monogr 68:371–394. doi:10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2CrossRefGoogle Scholar
  11. Bryson ES, Trussell GC, Ewanchuk PJ (2014) Broad-scale geographic variation in the organization of rocky intertidal communities in the Gulf of Maine. Ecol Monogr. doi: 10.1890/13-1106.110.1890/13-1106.1 Google Scholar
  12. Burrows MT, Hughes RN (1989) Natural foraging of the dogwhelk, Nucella lapillus (Linnaeus); the weather and whether to feed. J Molluscan Stud 55:285–295. doi: 10.1093/mollus/55.2.285 CrossRefGoogle Scholar
  13. Burrows MT, Hughes RN (1990) Variation in growth and consumption among individuals and populations of dogwhelks, Nucella lapillus: a link between foraging behaviour and fitness. J Anim Ecol 59:723–742. doi: 10.2307/4891 CrossRefGoogle Scholar
  14. Cossins AR, Bowler K (1987) Temperature biology of animals. Chapman and Hall, LondonCrossRefGoogle Scholar
  15. Creel S, Christianson D, Liley S, Winnie JA (2007) Predation risk affects reproductive physiology and demography of elk. Science 315:960. doi: 10.1126/science.1135918 CrossRefPubMedGoogle Scholar
  16. Dahlhoff EP, Buckley BA, Menge BA (2001) Physiology of the rocky intertidal predator Nucella ostrina along an environmental stress gradient. Ecology 82:2816–2829. doi: 10.2307/2679963 CrossRefGoogle Scholar
  17. Dell AI, Pawar S, Savage VM (2013) Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J Anim Ecol 83:70–84. doi: 10.1111/1365-2656.12081 CrossRefPubMedGoogle Scholar
  18. Elner RW, Hughes RN (1978) Energy maximization in the diet of the shore crab, Carcinus maenas. J Anim Ecol 47:103–116. doi: 10.2307/3925 CrossRefGoogle Scholar
  19. Freeman AS, Hamer CE (2009) The persistent effect of wave exposure on TMIIs and crab predation in Nucella lapillus. J Exp Mar Biol Ecol 372:58–63. doi: 10.1016/j.jembe.2009.02.002 CrossRefGoogle Scholar
  20. Frumhoff PC, McCarthy JJ, Melillo JM, Moser SC, Wuebbles DJ (2007) Confronting climate change in the US Northeast. Synthesis Report of the Northeast Climate Impacts Assessment (NECIA). Union of Concerned Scientists, Cambridge, MassachusettsGoogle Scholar
  21. Grosholz ED, Ruiz GM (1996) Predicting the impact of introduced marine species: lessons from the multiple invasions of the European green crab Carcinus maenas. Biol Conserv 78:59–66. doi: 10.1016/0006-3207(94)00018-2 CrossRefGoogle Scholar
  22. Hiebenthal C, Philipp EE, Eisenhauer A, Wahl M (2013) Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Mar Biol 160:2073–2087. doi: 10.1007/s00227-012-2080-9 CrossRefGoogle Scholar
  23. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New YorkGoogle Scholar
  24. Houston AI, McNamara JM, Hutchinson JM (1993) General results concerning the trade-off between gaining energy and avoiding predation. Philos Trans R Soc B 341:375–397. doi: 10.1098/rstb.1993.0123 CrossRefGoogle Scholar
  25. Hughes RN (1972) Annual production of two Nova Scotian populations of Nucella lapillus (L.). Oecologia 8:356–370. doi: 10.1007/BF00367538 CrossRefGoogle Scholar
  26. Iles AC (2014) Towards predicting community level effects of climate: Relative temperature scaling of metabolic and ingestion rates. Ecology 95:2657–2668. doi: 10.1890/13-1342.1 CrossRefGoogle Scholar
  27. IPCC Working Group III (2000) IPCC Special Report Emissions Scenarios: Summary for Policymakers IPCC Special Report Emissions Scenarios. Switzerland, Geneva, p 20Google Scholar
  28. Jones SJ, Lima FP, Wethey DS (2010) Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J Biogeogr 37:2243–2259. doi: 10.1111/j.1365-2699.2010.02386.x CrossRefGoogle Scholar
  29. Klassen GJ, Locke A (2007) A biological synopsis of the European green crab, Carcinus maenas. Can Manuscr Rep Fish Aquat Sci 2818: vii-75. http://www.dfo-mpo.gc.ca/library/330845.pdf
  30. Kordas RL, Harley CD, O’Connor MI (2011) Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Biol Ecol 400:218–226. doi: 10.1016/j.jembe.2011.02.029 CrossRefGoogle Scholar
  31. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol 19:1884–1896. doi: 10.1111/gcb.12179 CrossRefGoogle Scholar
  32. Landes A, Zimmer M (2012) Acidification and warming affect both a calcifying predator and prey, but not their interaction. Mar Ecol Prog Ser 450:1–10. doi: 10.3354/meps09666 CrossRefGoogle Scholar
  33. Largen MJ (1967) The influence of water temperature upon the life of the dog-whelk Thais lapillus (Gastropoda: Prosobranchia). J Anim Ecol 36:207–214. doi: 10.2307/3022 CrossRefGoogle Scholar
  34. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. doi: 10.1139/z90-092 CrossRefGoogle Scholar
  35. Luttbeg B, Rowe L, Mangel M (2003) Prey state and experimental design affect relative size of trait- and density-mediated indirect effects. Ecology 84:1140–1150. doi:10.1890/0012-9658(2003)084[1140:PSAEDA]2.0.CO;2CrossRefGoogle Scholar
  36. Matassa CM (2014) Ecological context shapes the response of consumers to predation risk. PhD Dissertation, Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA. http://hdl.handle.net/2047/d20004941
  37. Matassa CM, Trussell GC (2011) Landscape of fear influences the relative importance of consumptive and nonconsumptive predator effects. Ecology 92:2258–2266. doi: 10.1890/11-0424.1 CrossRefPubMedGoogle Scholar
  38. Matzelle AJ, Sará G, Montalto V, Zippay M, Trussell GC, Helmuth B (2014) ​A bioenergetics framework for integrating the effects of multiple stressors: opening a ‘black box’ in climate change research. Am Malacol Bull (in press)Google Scholar
  39. McNamara JM, Houston AI (1987) Starvation and predation as factors limiting population size. Ecology 68:1515–1519. doi: 10.2307/1938669 CrossRefGoogle Scholar
  40. Menge BA (1976) Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol Monogr 46:355–393. doi: 10.2307/1942563 CrossRefGoogle Scholar
  41. Menge BA (1978a) Predation intensity in a rocky intertidal community. Effect of an algal canopy, wave action and desiccation on predator feeding rates. Oecologia 34:17–35. doi: 10.1007/BF00346238 CrossRefGoogle Scholar
  42. Menge BA (1978b) Predation intensity in a rocky intertidal community. Relation between predator foraging activity and environmental harshness. Oecologia 34:1–16. doi: 10.1007/BF00346237 CrossRefGoogle Scholar
  43. Miller LP (2013) The effect of water temperature on drilling and ingestion rates of the dogwhelk Nucella lapillus feeding on Mytilus edulis mussels in the laboratory. Mar Biol 160:1489–1496. doi: 10.1007/s00227-013-2202-z CrossRefGoogle Scholar
  44. Miller LP, Matassa CM, Trussell GC (2014) Climate change enhances the negative effects of predation risk on an intermediate consumer. Glob Change Biol. doi: 10.1111/gcb.12639 Google Scholar
  45. Monaco CJ, Helmuth B (2011) Tipping points, thresholds and the keystone role of physiology in marine climate change research. Adv Mar Biol 60:123–160. doi: 10.1016/B978-0-12-385529-9.00003-2 CrossRefPubMedGoogle Scholar
  46. O’Connor MI (2009) Warming strengthens an herbivore-plant interaction. Ecology 90:388–398. doi: 10.1890/08-0034.1 CrossRefPubMedGoogle Scholar
  47. Palmer AR (1982) Growth in marine gastropods: a non-destructive technique for independently measuring shell and body weight. Malacologia 23:63–74Google Scholar
  48. Palmer AR (1992) Calcification in marine molluscs: how costly is it? Proc Natl Acad Sci USA 89:1379–1382CrossRefPubMedCentralPubMedGoogle Scholar
  49. Pauwels K, Stoks R, De Meester L (2005) Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna. J Evol Biol 18:867–872. doi: 10.1111/j.1420-9101.2005.00890.x CrossRefPubMedGoogle Scholar
  50. Perrin N (1995) About Berrigan and Charnov’s life-history puzzle. Oikos 73:137–139. doi: 10.2307/3545737 CrossRefGoogle Scholar
  51. Pincebourde S, Sanford E, Helmuth B (2008) Body temperature during low tide alters the feeding performance of a top intertidal predator. Limnol Oceanogr 53:1562–1573. doi: 10.4319/lo.2008.53.4.1562 CrossRefGoogle Scholar
  52. Queirós AM, Fernandes JA, Faulwetter S, Nunes J, Rastrick SP, Mieszkowska N, Artioli Y, Yool A, Calosi P, Arvanitidis C (2014) Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Glob Change Biol. doi: 10.1111/gcb.12675 Google Scholar
  53. R Core Team (2013) R: A language and environment for statistical computing (v. 3.0.2). R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  54. Rall BC et al (2012) Universal temperature and body-mass scaling of feeding rates. Philos Trans R Soc B 367:2923–2934. doi: 10.2307/41740019 CrossRefGoogle Scholar
  55. Ripple WJ, Beschta RL (2004) Wolves and the ecology of fear: can predation risk structure ecosystems? Bioscience 54:755–766. doi:10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2CrossRefGoogle Scholar
  56. Rovero F, Hughes RN, Chelazzi G (1999) Cardiac and behavioural responses of mussels to risk of predation by dogwhelks. Anim Behav 58:707–714. doi: 10.1006/anbe.1999.1176 CrossRefPubMedGoogle Scholar
  57. Sanford E (1999) Regulation of keystone predation by small changes in ocean temperature. Science 283:2095–2097. doi: 10.1126/science.283.5410.2095 CrossRefPubMedGoogle Scholar
  58. Sanford E (2002a) The feeding, growth, and energetics of two rocky intertidal predators (Pisaster ochraceus and Nucella canaliculata) under water temperatures simulating episodic upwelling. J Exp Mar Biol Ecol 273:199–218. doi: 10.1016/S0022-0981(02)00164-8 CrossRefGoogle Scholar
  59. Sanford E (2002b) Water temperature, predation, and the neglected role of physiological rate effects in rocky intertidal communities. Integr Comp Biol 42:881–891. doi: 10.1093/icb/42.4.881 CrossRefPubMedGoogle Scholar
  60. Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163. doi: 10.1111/j.1461-0248.2003.00560.x CrossRefGoogle Scholar
  61. Schmitz OJ, Hawlena D, Trussell GC (2010) Predator control of ecosystem nutrient dynamics. Ecol Lett 13:1199–1209. doi: 10.1111/j.1461-0248.2010.01511.x CrossRefPubMedGoogle Scholar
  62. Sih A (1980) Optimal behavior: can foragers balance two conflicting demands? Science 210:1041–1043. doi: 10.1126/science.210.4473.1041 CrossRefPubMedGoogle Scholar
  63. Slos S, Stoks R (2008) Predation risk induces stress proteins and reduces antioxidant defense. Funct Ecol 22:637–642. doi: 10.1111/j.1365-2435.2008.01424.x CrossRefGoogle Scholar
  64. Sokal RR, Rohlf FJ (2012) Biometry: the principles and practice of statistics in biological research, 4th edn. W.H. Freeman, New YorkGoogle Scholar
  65. Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr Comp Biol 42:780–789. doi: 10.1093/icb/42.4.780 CrossRefPubMedGoogle Scholar
  66. Stickle WB, Bayne BL (1982) Effects of temperature and salinity on oxygen consumption and nitrogen excretion in Thais (Nucella) lapillus (L.). J Exp Mar Biol Ecol 58:1–17. doi: 10.1016/0022-0981(82)90093-4 CrossRefGoogle Scholar
  67. Stickle WB, Bayne BL (1987) Energetics of the muricid gastropod Thais (Nucella) lapillus (L.). J Exp Mar Biol Ecol 107:263–278. doi: 10.1016/0022-0981(87)90043-8 CrossRefGoogle Scholar
  68. Stickle WB, Moore MN, Bayne BL (1985) Effects of temperature, salinity and aerial exposure on predation and lysosomal stability of the dogwhelk Thais (Nucella) lapillus (L.). J Exp Mar Biol Ecol 93:235–258. doi: 10.1016/0022-0981(85)90242-4 CrossRefGoogle Scholar
  69. Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65. doi: 10.1126/science.1083073 CrossRefPubMedGoogle Scholar
  70. Tepolt CK, Somero GN (2014) Master of all trades: thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. J Exp Biol 217:1129–1138. doi: 10.1242/jeb.093849 CrossRefPubMedGoogle Scholar
  71. Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals. Science 320:1296–1297. doi: 10.1126/science.1159328 CrossRefPubMedGoogle Scholar
  72. Trussell GC, Smith LD (2000) Induced defenses in response to an invading crab predator: an explanation of historical and geographic phenotypic change. Proc Natl Acad Sci USA 97:2123–2127. doi: 10.1073/pnas.040423397 CrossRefPubMedCentralPubMedGoogle Scholar
  73. Trussell GC, Ewanchuk PJ, Bertness MD (2002) Field evidence of trait-mediated indirect interactions in a rocky intertidal food web. Ecol Lett 5:241–245. doi: 10.1046/j.1461-0248.2002.00304.x CrossRefGoogle Scholar
  74. Trussell GC, Ewanchuk PJ, Bertness MD (2003) Trait-mediated effects in rocky intertidal food chains: predator risk cues alter prey feeding rates. Ecology 84: 629–640.http://www.jstor.org/stable/3107858
  75. Trussell GC, Ewanchuk PJ, Matassa CM (2006a) The fear of being eaten reduces energy transfer in a simple food chain. Ecology 87:2979–2984. doi:10.1890/0012-9658(2006)87[2979:TFOBER]2.0.CO;2CrossRefPubMedGoogle Scholar
  76. Trussell GC, Ewanchuk PJ, Matassa CM (2006b) Habitat effects on the relative importance of trait- and density-mediated indirect interactions. Ecol Lett 9:1245–1252. doi: 10.1111/j.1461-0248.2006.00981.x CrossRefPubMedGoogle Scholar
  77. Vucic-Pestic O, Ehnes RB, Rall BC, Brose U (2011) Warming up the system: higher predator feeding rates but lower energetic efficiencies. Glob Change Biol 17:1301–1310. doi: 10.1111/j.1365-2486.2010.02329.x CrossRefGoogle Scholar
  78. Werner EE, Anholt BR (1993) Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am Nat 142:242–272. doi: 10.1086/285537 CrossRefPubMedGoogle Scholar
  79. Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100. doi:10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2CrossRefGoogle Scholar
  80. Yamane L, Gilman SE (2009) Opposite responses by an intertidal predator to increasing aquatic and aerial temperatures. Mar Ecol Prog Ser 393:27–36. doi: 10.3354/meps08276 CrossRefGoogle Scholar
  81. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Marine Science CenterNortheastern UniversityNahantUSA

Personalised recommendations