Oecologia

, Volume 177, Issue 3, pp 849–860 | Cite as

Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance

  • Jessica Garzke
  • Stefanie M. H. Ismar
  • Ulrich Sommer
Global change ecology - Original research

Abstract

Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient −4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.

Keywords

Acartia sp. Temperature–size rule Metabolic theory of ecology 

Supplementary material

442_2014_3130_MOESM1_ESM.docx (258 kb)
Supplementary material 1 (DOCX 257 kb)

References

  1. Batten SD, Walne AW (2011) Variability in northwards extension of warm water copepods in the NE Pacific. J Plankton Res 33:1643–1653CrossRefGoogle Scholar
  2. Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edwards M (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694CrossRefPubMedGoogle Scholar
  3. Behrends G (1996) Long-term investigation of seasonal zooplankton dynamics in Kiel Bight, Germany. Proceedings of the 13th Baltic Marine Biology Symposium, Jurmala, Institute of Aquatic Ecology, University of Latvia, Riga, pp 93–99Google Scholar
  4. Bergmann K (1847) Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer GrösseGoogle Scholar
  5. Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174CrossRefGoogle Scholar
  6. Bochdansky AB, Grønkjær P, Herra TP, Leggett WC (2005) Experimental evidence for selection against fish larvae with high metabolic rates in a food limited environment. Mar Biol 147:1413–1417CrossRefGoogle Scholar
  7. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596CrossRefPubMedGoogle Scholar
  8. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789CrossRefGoogle Scholar
  9. Campbell RG, Wagner MM, Teegarden GJ, Boudreau CA, Durbin EG (2001) Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Mar Ecol Prog Ser 221:161–183CrossRefGoogle Scholar
  10. Claireaux G, Lefrancois C (2007) Linking environmental variability and fish performance: integration through the concept of scope for activity. Philos Trans Royal Soc B Biol Sci 362:2031–2041CrossRefGoogle Scholar
  11. Cottingham KL, Lennon JT, Brown BL (2005) Knowing when to draw the line: designing more informative ecological experiments. Front Ecol Environ 3:145–152CrossRefGoogle Scholar
  12. Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Nat Acad Sci USA 106:12788–12793CrossRefPubMedCentralPubMedGoogle Scholar
  13. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884CrossRefPubMedGoogle Scholar
  14. Escribano R, McLaren IA (1992) Influence of food and temperature on lengths and weights of 2 marine copepods. J Exp Mar Biol Ecol 159:77–88CrossRefGoogle Scholar
  15. Forster J, Hirst AG, Atkinson D (2011) How do organisms change size with changing temperature? The importance of reproductive method and ontogenetic timing. Funct Ecol 25:1024–1031CrossRefGoogle Scholar
  16. Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc Nat Acad Sci USA 109:19310–19314CrossRefPubMedCentralPubMedGoogle Scholar
  17. Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291CrossRefPubMedGoogle Scholar
  18. Gaudy R, Verriopoulos G (2004) Spatial and seasonal variations in size, body volume and body proportion (prosome : urosome ratio) of the copepod Acartia tonsa in a semi-closed ecosystem (Berre lagoon, western Mediterranean). Hydrobiologia 513:219–229CrossRefGoogle Scholar
  19. Gismervik I, Olsen Y, Vadstein O (2002) Micro- and mesozooplankton response to enhanced nutrient input–a mesocosm study. Hydrobiologia 484:75–87CrossRefGoogle Scholar
  20. Goodman RE, Lebuhn G, Seavy NE, Gardali T, Bluso-Demers JD (2012) Avian body size changes and climate change: warming or increasing variability? Glob Change Biol 18:63–73CrossRefGoogle Scholar
  21. Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculations for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  22. Hirst AG, Kiorboe T (2002) Mortality of marine planktonic copepods: global rates and patterns. Mar Ecol Prog Ser 230:195–209CrossRefGoogle Scholar
  23. IPCC (2007) Climate change 2007: the physical science basis. UNEP and WHO, CambridgeGoogle Scholar
  24. Klein Breteler WCM, Schogt N, Gonzalez SR (1990) On the role of food quality in grazing and development of life stages and genetic change of body size during cultivation of pelagic copepods. J Exp Mar Biol Ecol 135:177–189CrossRefGoogle Scholar
  25. Klein Breteler WCM, Schogt N (1994) Development of Acartia clausi (Copepoda, Calanoida) cultured at different conditions of temperature and food. Hydrobiologia 292-293:469–479 LA–EnglishCrossRefGoogle Scholar
  26. Kobari T, Ikeda T (2001) Ontogenetic vertical migration and life cycle of Neocalanus plumchrus (Crustacea : Copepoda) in the Oyashio region, with notes on regional variations in body sizes. J Plankton Res 23:287–302CrossRefGoogle Scholar
  27. Kordas RL, Harley CDG, O’Connor MI (2011) Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Biol Ecol 400:218–226CrossRefGoogle Scholar
  28. Koski M, Breteler WK, Schogt N (1998) Effect of food quality on rate of growth and development of the pelagic copepod Pseudocalanus elongatus (Copepoda, Calanoida). Mar Ecol Prog Ser 170:169–187CrossRefGoogle Scholar
  29. Krueger C, Tian L (2004) A comparison of the general linear mixed model and repeated measures anova using a dataset with multiple missing data points. Biol Res Nurs 6:151–157CrossRefPubMedGoogle Scholar
  30. Leandro SM, Queiroga H, Rodriguez-Grana L, Tiselius P (2006) Temperature-dependent development and somatic growth in two allopatric populations of Acartia clausi (Copepoda : Calanoida). Mar Ecol Prog Ser 322:189–197CrossRefGoogle Scholar
  31. Lewandowska AM, Sommer U (2010) Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Mar Ecol Prog Ser 405:101–111CrossRefGoogle Scholar
  32. Mackas DL et al (2012) Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology. Prog Oceanogr 97:31–62CrossRefGoogle Scholar
  33. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579CrossRefGoogle Scholar
  34. Möllmann C, Kornilovs G, Fetter M, Koster FW (2005) Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES J Mar Sci 62:1270–1280CrossRefGoogle Scholar
  35. Möllmann C, Müller-Karulis B, Kornilovs G, St John MA (2008) Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES J Mar Sci 65:302–310CrossRefGoogle Scholar
  36. Müller H, Geller W (1993) Maximum growth rates of aquatic ciliated protozoa–the dependence on body size and temperature reconsidered. Arch Hydrobiol 126:315–327Google Scholar
  37. O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. Plos Biol 7:e1000178CrossRefPubMedCentralPubMedGoogle Scholar
  38. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  39. Patridge L, Barrie B, Fowler K, French V (1994) Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 48:1269–1276CrossRefGoogle Scholar
  40. Pearman PB et al (2008) Prediction of plant species distributions across six millennia. Ecol Lett 11:357–369CrossRefPubMedGoogle Scholar
  41. Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72CrossRefGoogle Scholar
  42. Putt M, Stoecker DK (1989) An experimentally determined carbon—volume ratio for marine oligotrichous ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103CrossRefGoogle Scholar
  43. Reading CJ (2007) Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 151:125–131CrossRefPubMedGoogle Scholar
  44. Shannon CE, Weaver W (1963) Mathematical theory of communication. University Illinois Press, IIIGoogle Scholar
  45. Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Change 1:401–406CrossRefGoogle Scholar
  46. Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208CrossRefGoogle Scholar
  47. Sommer U, Lewandowska AM (2011) Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob Change Biol 17:154–162CrossRefGoogle Scholar
  48. Sommer U et al (2007) An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150:655–667CrossRefPubMedGoogle Scholar
  49. Sweeney BW, Vannote RL, Doods PJ (1986) The relative importance of temperature and diet to larval development and adult size of the winter stonefly, Soyedina carolinensis (Piecoptera: Nemouridae). Freshw Biol 16:39–48CrossRefGoogle Scholar
  50. Taucher J, Schulz KG, Dittmar T, Sommer U, Oschlies A, Riebesell U (2012) Enhanced carbon overconsumption in response to increasing temperatures during a mesocosm experiment. Biogeosciences 9:3531–3545CrossRefGoogle Scholar
  51. Thresher RE, Koslow JA, Morison AK, Smith DC (2007) Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish. Proc Natl Acad Sci 104:7461–7465CrossRefPubMedCentralPubMedGoogle Scholar
  52. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen. Int Vereiningung Theor Angew Limnol 9:1–38Google Scholar
  53. Villegas CT, Kanazawa A (1979) Relationship between diet composition and growth rate of the zoel and mysis stages of Penaeus japonicus Bate. Fish Res J Philipp 4:32–40Google Scholar
  54. Walther GR et al (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  55. Winder M, Sommer U (2012) Phytoplankton response to a changing climate. Hydrobiologia 698:5–16CrossRefGoogle Scholar
  56. Wohlers J et al (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Natl Acad Sci USA 106:7067–7072CrossRefPubMedCentralPubMedGoogle Scholar
  57. Yom-Tov Y, Geffen E (2011) Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol Rev 86:531–541CrossRefPubMedGoogle Scholar
  58. Yom-Tov Y, Roos A, Mortensen P, Wiig O, Yom-Tov S, Heggberget TM (2010) Recent changes in body size of the Eurasian otter Lutra lutra in Sweden. Ambio 39:496–503CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jessica Garzke
    • 1
  • Stefanie M. H. Ismar
    • 1
  • Ulrich Sommer
    • 1
  1. 1.Deparment of Experimental Ecology-Food WebsGeomar Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations