Spatial gradient in nitrogen deposition affects plant species frequency in acidic grasslands

Abstract

Anthropogenic eutrophication impacts ecosystems worldwide. Here, we use a vegetation dataset from semi-natural grasslands on acidic soils sampled along a gradient in north-western Europe to examine the response of species frequency to nitrogen (N) deposition, controlling for the effects of other environmental variables. A second dataset of acidic grasslands from Germany and the Netherlands containing plots from different time periods was analysed to examine whether the results of the spatial gradient approach coincided with temporal changes in the abundance of species. Out of 44 studied species, 16 were affected by N deposition, 12 of them negatively. Soil pH and phosphorus (P) influenced 24 and 14 species, respectively, predominantly positively. Fewer species were related to the soil contents of NO3 or NH4 +, with no significant differences between the number of positive and negative effects. Whereas the temporal change of species was unrelated to their responses to pH, species responding negatively to N deposition, soil P and NO3 showed a significant decline over time in both countries. Species that were negatively affected by high N deposition and/or high soil P also showed a negative temporal trend and could be characterised by short stature and slow growth. The results confirm the negative role of N deposition for many plant species in semi-natural acidic grasslands. The negative temporal trends of species sensitive to high N deposition and soil P values clearly show a need for maintaining low soil nutrient status and for restoring the formerly infertile conditions in nutrient-enriched grasslands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252–3260. doi:10.1890/09-1849.1

    PubMed  Article  Google Scholar 

  2. Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42

  3. Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234. doi:10.1641/0006-3568(2001)051

    Article  Google Scholar 

  4. Bennie J, Hill MO, Baxter R, Huntley B (2006) Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J Ecol 94:355–368. doi:10.1111/j.1365-2745.2006.01104.x

    Article  Google Scholar 

  5. Berge E, Bartnicki J, Olendrzynski K, Tsyro SG (1999) Long-term trends in emissions and transboundary transport of acidifying air pollution in Europe. J Environ Manag 57:31–50. doi:10.1006/jema.1999.0275

    Article  Google Scholar 

  6. Blake L, Goulding KWT, Mott CJB, Johnston AE (1999) Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. Eur J Sol Sci 50:401–412. doi:10.1046/j.1365-2389.1999.00253.x

    CAS  Article  Google Scholar 

  7. Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi:10.1046/j.1365-2745.1998.8650717.x

    CAS  Article  Google Scholar 

  8. Bobbink R, Ashmore M, Braun S, Fluckiger W, van den Wyngaert IJJ (2003) Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. Swiss Agency for Environment, Forest and Landscape, Bern

    Google Scholar 

  9. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    CAS  PubMed  Article  Google Scholar 

  10. Ceulemans T, Merckx R, Hens M, Honnay O (2011) A trait-based analysis of the role of phosphorus vs. nitrogen enrichment in plant species loss across North-west European grasslands. J Appl Ecol 48:1155–1163. doi:10.1111/j.1365-2664.2011.02023.x

    CAS  Article  Google Scholar 

  11. Ceulemans T, Merckx R, Hens M, Honnay O (2013) Plant species loss from European semi-natural grasslands following nutrient enrichment–is it nitrogen or is it phosphorus? Glob Ecol Biogeogr 22:73–82. doi:10.1111/j.1466-8238.2012.00771.x

    Article  Google Scholar 

  12. Ceulemans T, Stevens CJ, Duchateau L, Jacquemyn H, Gowing DJG, Merckx R, Wallace H, van Rooijen N, Goethem T, Bobbink R, Dorland E, Gaudnik C, Alard D, Corcket E, Muller S, Dise NB, Dupré C, Diekmann M, Honnay O (2014) Soil phosphorus constrains biodiversity across European grasslands. Glob Change Biol:n/a-n/a. doi:10.1111/gcb.12650

    Google Scholar 

  13. Developmental Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  14. Diekmann M, Jandt U, Alard D, Bleeker A, Corcket E, Gowing DJG, Stevens CJ, Duprè C (2014) Long-term changes in calcareous grassland vegetation in North-western Germany–no decline in species richness, but a shift in species composition. Biol Conserv 172:170–179. doi:10.1016/j.biocon.2014.02.038

    Article  Google Scholar 

  15. Dupré C, Ehrlén J (2002) Habitat configuration, species traits and plant distributions. J Ecol 90:796–805. doi:10.1046/j.1365-2745.2002.00717.x

    Article  Google Scholar 

  16. Dupré C, Stevens CJ, Ranke T, Bleeker A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland EDU, Bobbink R, Diekmann M (2010) Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Change Biol 16:344–357. doi:10.1111/j.1365-2486.2009.01982.x

    Article  Google Scholar 

  17. Ellenberg H (1952) Wiesen und Weiden und ihre standörtliche Bewertung. Ulmer, Stuttgart

    Google Scholar 

  18. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. In Okologischer, Dynamischer und Historischer Sicht, 6. Ulmer Eugen, Stuttgart

  19. Falkengren-Grerup U (1995) Long-term changes in flora and vegetation in deciduous forests of southern Sweden. Ecol Bull:215–226

  20. Falkengren-Grerup U, Lakkenborg-Kristensen H (1994) Importance of ammonium and nitrate to the performance of herb-layer species from deciduous forests in Southern Sweden. Environ Exp Bot 34:31–38. doi:10.1016/0098-8472(94)90006-x

    Article  Google Scholar 

  21. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296. doi:10.1126/science.290.5490.291

    CAS  PubMed  Article  Google Scholar 

  22. Fangmeier A, Hadwiger-Fangmeier A, Van der Eerden L, Jager HJ (1994) Effects of atmospheric ammonia on vegetation- A review. Environ Pollut 86:43–82. doi:10.1016/0269-7491(94)90008-6

    CAS  PubMed  Article  Google Scholar 

  23. Fitter AH, Peat HJ (1994) The ecological flora database (http://www.ecoflora.co.uk). J Ecol 82:415. doi: 10.2307/2261309

  24. Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71. doi:10.1579/0044-7447-31.2.64

    PubMed  Google Scholar 

  25. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi:10.1126/science.1136674

    CAS  PubMed  Article  Google Scholar 

  26. Gauger T, Anshelm F, Schuster H, Erisman JW, Vermeulen AT, Draaijers GPJ, Bleeker A, Nagel H-D (2002) Mapping of ecosystem specific long term trends in deposition loads and concentrations of air pollutants in Germany and their comparison with critical loads and critical levels. Umweltbundesamt, Berlin

    Google Scholar 

  27. Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J Ecol 94:1176–1191. doi:10.1111/j.1365-2745.2006.01155.x

    CAS  Article  Google Scholar 

  28. Güsewell S (2004) N : p ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x

    Article  Google Scholar 

  29. Horswill P, O’Sullivan O, Phoenix GK, Lee JA, Leake JR (2008) Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ Pollut 155:336–349. doi:10.1016/j.envpol.2007.11.006

    CAS  PubMed  Article  Google Scholar 

  30. Janssens F, Peeters A, Tallowin JRB, Bakker JP, Bekker RM, Fillat F, Oomes MJM (1998) Relationship between soil chemical factors and grassland diversity. Plant Soil 202:69–78. doi:10.1023/A:1004389614865

    CAS  Article  Google Scholar 

  31. Kleijn D, Bekker RM, Bobbink R, De Graaf MCC, Roelofs JGM (2008) In search for key biogeochemical factors affecting plant species persistence in heathland and acidic grasslands: a comparison of common and rare species. J Appl Ecol 45:680–687. doi:10.1111/j.1365-2664.2007.01444.x

    CAS  Article  Google Scholar 

  32. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesova J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Gotzenberger L, Hodgson JG, Jackel AK, Kuhn I, Kunzmann D, Ozinga WA, Romermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274. doi:10.1111/j.1365-2745.2008.01430.x

    Article  Google Scholar 

  33. Lucassen ECHET, Bobbink R, Smolders AJP, van der Ven PJM, Lamers LPM, Roelofs JGM (2003) Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum (L.) Hill. Plant Ecol 165:45–52. doi:10.1023/a:1021467320647

    Article  Google Scholar 

  34. Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:696–704. doi:10.1111/j.1469-8137.2011.03967.x

    CAS  PubMed  Article  Google Scholar 

  35. Ministry of Agriculture Fisheries and Food (1986) The analysis of agricultural materials. Her Majesty’s Stationery Office, London

    Google Scholar 

  36. Monitoring Agricultural Resourses (MARS) (2009) European Commission Joint Research Centre. http://www.mars.jrc.it

  37. Morecroft MD, Sellers EK, Lee JA (1994) An experimental investigation into the effects of atmospheric nitrogen deposition on two semi-natural grasslands. J Ecol 82:475. doi:10.2307/2261256

    CAS  Article  Google Scholar 

  38. NEGTAP (2001) Transboundary air pollution: Acidification, eutrophication and ground-level ozone in the UK. CEH, Edinburgh

    Google Scholar 

  39. Newman EI (1973) Competition and diversity in herbaceous vegetation. Nature 244:310. doi:10.1038/244310a0

    Article  Google Scholar 

  40. Newman EI (1995) Phosphorus inputs to terrestrial ecosystems. J Ecol 83:713–726. doi:10.2307/2261638

    Article  Google Scholar 

  41. Nordin A, Högberg P, Näsholm T (2001) Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129:125–132. doi:10.1007/s004420100698

    Article  Google Scholar 

  42. Olde Venterink H, Wassen MJ, Verkroost AWM, De Ruiter PC (2003) Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84:2191–2199. doi:10.1890/01-0639

    Article  Google Scholar 

  43. Pennings SC, Clark CM, Cleland EE, Collins SL, Gough L, Gross KL, Milchunas DG, Suding KN (2005) Do individual plant species show predictable responses to nitrogen addition across multiple experiments? Oikos 110:547–555. doi:10.1111/j.0030-1299.2005.13792.x

    Article  Google Scholar 

  44. Peñuelas J, Sardans J, Rivas-ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Change Biol 18:3–6. doi:10.1111/j.1365-2486.2011.02568.x

    Article  Google Scholar 

  45. Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ, Sowerby A, Pilkington MG, Rowe EC, Ashmorek MR, Power SA (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Change Biol 18:1197–1215. doi:10.1111/j.1365-2486.2011.02590.x

    Article  Google Scholar 

  46. Pieterse G, Bleeker A, Vermeulen AT, Wu Y, Erisman JW (2007) High resolution modelling of atmosphere-canopy exchange of acidifying and eutrophying components and carbon dioxide for European forests. Tellus B 59:412–424. doi:10.1111/j.1600-0889.2007.00266.x

    Article  Google Scholar 

  47. Rich T, Redbane M, Fasham M, McMeechan F, Dobson D (2005) Ground and shrub vegetation. In: Hill D, Fasham M, Tucker G, Shewry M, Shaw P (eds) Handbook of biodiversity methods: survey, evaluation and monitoring. Cambridge University Press, Cambridge, pp 202–222

    Google Scholar 

  48. Roelofs JGM, Bobbink R, Brouwer E, DeGraaf MCC (1996) Restoration ecology of aquatic and terrestrial vegetation on non-calcareous sandy soils in The Netherlands. Acta Bot Neerl 45:517–541

    Article  Google Scholar 

  49. Roem WJ, Berendse F (2000) Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv 92:151–161. doi:10.1016/S0006-3207(99)00049-X

    Article  Google Scholar 

  50. Sala OE, Chapin FS 3rd, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770

    CAS  PubMed  Article  Google Scholar 

  51. Schuster B, Diekmann M (2003) Changes in species density along the soil pH gradient-evidence from German plant communities. Folia Geobot 38:367–379. doi:10.1007/bf02803245

    Article  Google Scholar 

  52. Skogen KA, Holsinger KE, Cardon ZG (2011) Nitrogen deposition, competition and the decline of a regionally threatened legume, Desmodium cuspidatum. Oecologia 165:261–269. doi:10.1007/s00442-010-1818-7

    PubMed  Article  Google Scholar 

  53. Smith RI, Fowler D, Sutton MA, Flechard C, Coyle M (2000) Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs. Atmos Environ 34:3757–3777. doi:10.1016/S1352-2310(99)00517-8

    CAS  Article  Google Scholar 

  54. Stevens CJ, Dise NB, Gowing DJ (2009) Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environ Pollut 157:313–319. doi:10.1016/j.envpol.2008.06.033

    CAS  PubMed  Article  Google Scholar 

  55. Stevens CJ, Dupré C, Dorland E, Gaudnik C, Gowing DJ, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010a) Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158:2940–2945. doi:10.1016/j.envpol.2010.06.006

    CAS  PubMed  Article  Google Scholar 

  56. Stevens CJ, Thompson K, Grime JP, Long CJ, Gowing DJG (2010b) Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition. Funct Ecol 24:478–484. doi:10.1111/j.1365-2435.2009.01663.x

    Article  Google Scholar 

  57. Stevens C, Dupré C, Gaudnik C, Dorland E, Dise N, Gowing D, Bleeker A, Alard D, Bobbink R, Fowler D, Vandvik V, Corcket E, Mountford JO, Aarrestad PA, Muller S, Diekmann M (2011a) Changes in species composition of European acid grasslands observed along a gradient of nitrogen deposition. J Veg Sci 22:207–215. doi:10.1111/j.1654-1103.2010.01254.x

    Article  Google Scholar 

  58. Stevens CJ, Dupré C, Dorland E, Gaudnik C, Gowing DJ, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2011b) The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environ Pollut 159:2243–2250. doi:10.1016/j.envpol.2010.11.026

    CAS  PubMed  Article  Google Scholar 

  59. Stevens CJ, Dupré C, Dorland E, Gaudnik C, Gowing DJG, Diekmann M, Alard D, Bobbink R, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2011c) Grassland species composition and biogeochemistry in 153 sites along environmental gradients in Europe. Ecology 92:1544. doi:10.1890/11-0115.1

    Article  Google Scholar 

  60. Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392. doi:10.1073/pnas.0408648102

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  61. Tamm CO (1991) Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes, and ecosystem stability. Springer, Berlin

    Google Scholar 

  62. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284. doi:10.1126/science.1057544

    CAS  PubMed  Article  Google Scholar 

  63. Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355. doi:10.1111/j.1469-8137.2004.01159.x

    Article  Google Scholar 

  64. Vallano DM, Sparks JP (2013) Foliar δ15 N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient. Oecologia 172:47–58. doi:10.1007/s00442-012-2489-3

    PubMed  Article  Google Scholar 

  65. van den Berg LJ, Dorland E, Vergeer P, Hart MA, Bobbink R, Roelofs JG (2005) Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol 166:551–564. doi:10.1111/j.1469-8137.2005.01338.x

    PubMed  Article  Google Scholar 

  66. van Jaarsveld JA (2004) The operational priority substances model. Report No. 500045001/2004, National Institute for Public Health and the Environment, Bilthoven, The Netherlands

  67. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. doi:10.1890/1051-0761(1997)007

    Google Scholar 

  68. Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15. doi:10.1890/08-0127.1

    PubMed  Article  Google Scholar 

  69. Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550. doi:10.1038/nature03950

    CAS  PubMed  Article  Google Scholar 

  70. Weigelt A, Bol R, Bardgett RD (2005) Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142:627–635. doi:10.1007/s00442-004-1765-2

    PubMed  Article  Google Scholar 

  71. Wisskirchen R, Haeupler H (1998) Standardliste der Farn- und Blütenpflanzen Deutschlands. Eugen Ulmer, Stuttgart

    Google Scholar 

Download references

Acknowledgments

We would like to thank all people who were involved in collecting the original data and making it available to us. Comments of two anonymous referees and the editors improved earlier versions of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Pannek.

Additional information

Communicated by Hormoz BassiriRad.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pannek, A., Duprè, C., Gowing, D.J.G. et al. Spatial gradient in nitrogen deposition affects plant species frequency in acidic grasslands. Oecologia 177, 39–51 (2015). https://doi.org/10.1007/s00442-014-3120-6

Download citation

Keywords

  • Eutrophication
  • Life-history traits
  • Nitrate
  • Semi-natural grasslands
  • Soil pH