Advertisement

Oecologia

, Volume 177, Issue 2, pp 581–594 | Cite as

Does species richness affect fine root biomass and production in young forest plantations?

  • Timo Domisch
  • Leena Finér
  • Seid Muhie Dawud
  • Lars Vesterdal
  • Karsten Raulund-Rasmussen
Ecosystem ecology - Original research

Abstract

Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

Keywords

Biodiversity Competition Complementarity Soil Tree diversity 

Notes

Acknowledgments

We would like to sincerely thank Ms. Sigrid Berger, Ms. María Martínez Otero, Mr. Raino Lievonen, Mr. Arto Saari and Mr. Ilkka Jussila for field assistance, as well as Ms. Eija Koljonen, Ms. Seija Repo, Ms. Anita Pussinen, Ms. Niina-Maria Erola, Ms. Sanna Kykkänen, Ms. Tiina Turunen, Ms. Heini Savola, Ms. Helena Tanskanen, Mr. Janne Hakkarainen, Mr. Miika Nokelainen, Mr. Tuomas Silvonen and Mr. Tapio Laakso for help in the laboratory. The research leading to these results has been conducted as part of the FunDivEUROPE project, which received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 265171.

Supplementary material

442_2014_3107_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 33 kb)

References

  1. Aulen M, Shipley B, Bradely R (2012) Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits. Ann Bot 109:287–297. doi: 10.1093/aob/mcr259 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bauhus J, Khanna PK, Menden N (2000) Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acaria mearnsii. Can J For Res 30:1886–1894. doi: 10.1139/x00-141 CrossRefGoogle Scholar
  3. Beyer F, Hertel D, Jung K, Fender AC, Leuschner C (2013) Competition effects on fine root survival of Fagus sylvatica and Fraxinus excelsior. For Ecol Manage 302:14–22. doi: 10.1016/j.foreco.2013.03.020 CrossRefGoogle Scholar
  4. Bolte A, Villanueava I (2006) Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Eur J For Res 125:15–26. doi: 10.1007/s10342-005-0075-5 CrossRefGoogle Scholar
  5. Brassard BW, Chen HYH, Bergeron Y, Paré D (2011) Differences in fine root productivity between mixed- and single species stands. Funct Ecol 25:238–246. doi: 10.1111/j.1365-2435.2010.01769.x CrossRefGoogle Scholar
  6. Brassard BW, Chen HYH, Cavard X, Lahanière J, Reich PB, Bergeron Y, Paré D, Yian Z (2013) Tree species diversity increases fine root productivity through increased soil volume filling. J Ecol 101:210–219. doi: 10.1111/1365-2745.12023 CrossRefGoogle Scholar
  7. Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. PNAS 104:18123–18128. doi: 10.1073/pnas.0709069104 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28: 545–570. http://www.jstor.org/stable/2952504
  9. Chen W, Zhang Q, Cihlar J, Bauhus J, Price DT (2004) Estimating fine-root biomass and production of boreal and cool temperate forests using aboveground measurements: a new approach. Plant Soil 265:31–46. doi: 10.1007/s11104-005-8503-3 CrossRefGoogle Scholar
  10. de Kroon H, Hendriks M, van Ruijiven J, Ravenek J, Padilla FM, Jongejans E, Visser EJW, Mommer L (2012) Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. J Ecol 100:6–15. doi: 10.1111/j.1365-2745.2011.01906.x CrossRefGoogle Scholar
  11. Erskine PD, Lamb D, Bristow M (2006) Tree species diversity and ecosystem function: can tropical multi-species plantations generate greater productivity? For Ecol Manage 233:205–210. doi: 10.1016/j.foreco.2006.05.013 CrossRefGoogle Scholar
  12. Esbensen KH (2001) Multivariate data analysis—in practice. An introduction to multivariate data analysis and experimental design, 5th edn. Camo Process, OsloGoogle Scholar
  13. Finér L, Helmisaari H-S, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konopka B, Kraigher H, Möttönen M, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405. doi: 10.1080/11263500701625897 CrossRefGoogle Scholar
  14. Finér L, Ohashi M, Noghuchi K, Hirano Y (2011a) Factors causing variation in fine root biomass in forest ecosystems. For Ecol Manage 261:265–277. doi: 10.1016/j.foerco.2010.10.016 CrossRefGoogle Scholar
  15. Finér L, Ohashi M, Noghuchi K, Hirano Y (2011b) Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manage 262:2008–2023. doi: 10.1016/j.foreco.2011.08.042 CrossRefGoogle Scholar
  16. Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forest with more tree species. Nat Commun 4:1340. doi: 10.1038/ncomms2328 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Griffin JN, Méndez V, Johnson AF, Jenkins S, Foggo A (2009) Functional diversity predicts overyielding effect of species combination on primary productivity. Oikos 118:37–44. doi: 10.1111/j.1600-0706.2008.16960.x CrossRefGoogle Scholar
  18. Gruselle M-C, Bauhus J (2010) Assessment of the species composition of forest floor horizons in mixed spruce-beech stands by near infrared reflectance spectrospcopy (NIRS). Soil Biol Biochem 42:1347–1354. doi: 10.1016/j.soilbio.2010.03.011 CrossRefGoogle Scholar
  19. Hector A, Bazeley-White E, Loreau M, Otway S, Schmid B (2002) Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments. Ecol Lett 5:502–511. doi: 10.1046/j.1461-0248.2002.00337.x CrossRefGoogle Scholar
  20. Helmisaari HS, Makkonen K, Kellomäki S, Valtonen E, Mälkönen E (2002) Below- and aboveground biomass, production and nitrogen use in Scots pine stands in eastern Finland. For Ecol Manage 165:317–326. doi: 10.1016/S0378-1127(01)00648-X CrossRefGoogle Scholar
  21. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi: 10.1890/04-0922 CrossRefGoogle Scholar
  22. Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202. doi: 10.1038/nature10282 PubMedCrossRefGoogle Scholar
  23. Jacob A, Hertel D, Leuschner C (2013) On the significance of belowground overyielding in temperate mixed forests: separating species identity and species diversity effects. Oikos 122:463–473. doi: 10.1111/jj.1600-0706.2012.20476.x CrossRefGoogle Scholar
  24. Kalela EK (1950) Männiköiden ja kuusikoiden juurisuhteista. Summary: on the horizontal roots in pine and spruce stand. Acta For Fenn 57:69–79Google Scholar
  25. Kalela EK (1955) Über Veränderungen in den Wurzelverhältnissen der Kiefernbestände im Laufe der Vegetationsperiode. Acta For Fenn 65:1–42Google Scholar
  26. Kalliokoski T, Nygren P, Sievänen R (2008) Coarse root architecture of three boreal tree species growing in mixed stands. Silva Fenn 233: 195–204. http://urn.fi/URN:NBN:fi:ELE-1401065
  27. Keyes MR, Grier CC (1981) Above- and belowground production in 40-year-old Douglas-fir stands on low and high productivity sites. Can J For Res 11:599–605. doi: 10.1139/x81-082 CrossRefGoogle Scholar
  28. Laitakari E (1935) Koivun juuristo. Summary: the root system of birch (Betula verrucosa and odorata). Acta For Fenn 41:168Google Scholar
  29. Lei P, Bauhus J (2010) Use of near-infrared reflectance spectroscopy to predict species composition in tree fine-root mixtures. Plant Soil 333:93–103. doi: 10.1007/s11104-010-0325-2 CrossRefGoogle Scholar
  30. Lei P, Scherer-Lorenzen M, Bauhus J (2012a) Belowground facilitation and competition in young tree species mixtures. For Ecol Manage 265:191–200. doi: 10.1016/j.foreco.2011.10.033 CrossRefGoogle Scholar
  31. Lei P, Scherer-Lorenzen M, Bauhus J (2012b) The effect of tree species diversity on fine-root production in a young temperate forest. Oecologia 169:1105–1115. doi: 10.1007/s00442-012-2259-2 PubMedCrossRefGoogle Scholar
  32. Martens HA, Dardenne P (1998) Validation and verification of regression in small data sets. Chemom Intell Lab 44:99–121. doi: 10.1016/S0169-7439(98)00167-1 CrossRefGoogle Scholar
  33. Matejovic I (1993) Determination of carbon, hydrogen, and nitrogen in soils by automated element analysis (dry combustion method). Commun Soil Sci Plant Anal 24:2213–2222. doi: 10.1080/00103629309368950 CrossRefGoogle Scholar
  34. McKay HM, Malcolm DC (1988) A comparison of the fine root component of a pure and a mixed coniferous stand. Can J For Res 18:1416–1426. doi: 10.1139/x88-220 CrossRefGoogle Scholar
  35. Meinen C, Hertel D, Leuschner C (2009) Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding? Oecologia 161:99–111. doi: 10.1007/s00442-009-1352-7 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Moron A, Cozzolino D (2004) Determination of potentially mineralizable nitrogen and nitrogen in particulate organic matter fractions in soil by visible and near-infrared reflectance spectroscopy. J Agric Sci 142:335–343. doi: 10.1017/S0021859604004290 CrossRefGoogle Scholar
  37. Oliveira MRG, Van Noordwijk M, Gaze SR, Brouwer G, Bona S, Mosca G, Hairiah K (2000) Auger sampling, ingrowth cores and pinboard methods. In: Smit AL, Bengough AG, Engels C, Van Noordwijk M, Pellerin S, Van de Geijn SC (eds) Root methods: a handbook. Springer, Berlin, pp 175–210. doi: 10.1007/978-3-662-04188-8_6
  38. Ostonen I, Püttsepp Ü, Biel C, Albertson O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442. doi: 10.1080/11263500701626069 CrossRefGoogle Scholar
  39. Paquette A, Messier C (2013) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180. doi: 10.1111/j.1466-8238.2010.00592.x CrossRefGoogle Scholar
  40. Picon-Cochard C, Pilon R, Revaillot S, Jestin M, Dawson L (2009) Use of near-infrared reflectance spectroscopy to predict the percentage of dead versus living grass roots. Plant Soil 317:309–320. doi: 10.1007/s11104-008-9810-2 CrossRefGoogle Scholar
  41. Rewald B, Leuschner C (2009) Belowground competition in a broad-leaved temperate mixed forest: pattern analysis and experiments in a four-species stand. Eur J For Res 128:387–398. doi: 10.1007/s10342-009-0276-4 CrossRefGoogle Scholar
  42. Roumet C, Picon-Cochard C, Dawson LA, Joffre R, Mayes R, Blanchard A, Brewer MJ (2006) Quantifying species composition in root mixtures using two methods: near-infrared reflectance spectroscopy and plant wax markers. New Phytol 170:631–638. doi: 10.1111/j.1469-8137.2006.01698.x PubMedCrossRefGoogle Scholar
  43. Scherer-Lorenzen M, Schulze E-D, Don A, Schumacher J, Weller E (2007) Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspect Plant Ecol Evol Syst 9:53–70. doi: 10.1016/j.ppees.2007.08.002 CrossRefGoogle Scholar
  44. Schmid B, Hector A, Saha P, Loreau M (2008) Biodiversity effects and transgressive overyielding. J Plant Ecol 1:95–102. doi: 10.1093/jpe/rtn011 CrossRefGoogle Scholar
  45. Stone M (1974) Cross-validatory choice and assessment of statistical predictions (with discussion). J R Stat Soc B 36:111–147Google Scholar
  46. Tamminen P, Starr M (1994) Bulk density of forested mineral soils. Silva Fenn 28:53–60CrossRefGoogle Scholar
  47. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845. doi: 10.1126/science.1060391 PubMedCrossRefGoogle Scholar
  48. Vávřová P, Stenberg B, Karsisto M, Kitunen V, Tapania T, Laiho R (2008) Near infrared reflectance spectroscopy for characterization of plant litter quality: towards a simpler way of predicting carbon turnover in Peatlands? In: Vymazal J (ed) Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Springer, New York, pp 65–87. doi: 10.1007/978-1-4020-8235-1_7 Google Scholar
  49. Viro PJ (1952) Kivisyyden määrittämisestä. Summary: On the determination of stoniness. Commun Inst For Fenn 40(3): 23 pGoogle Scholar
  50. Vogt KA, Moore EE, Vogt DJ, Redlin MJ, Edmonds RL (1983) Conifer fine root and mycorrhizal root biomass within the forest floors of Douglas-fir stands of different ages and site productivities. Can J For Res 13:429–437. doi: 10.1139/x83-065 CrossRefGoogle Scholar
  51. Vogt KA, Vogt DJ, Moore EE, Fataga BA, Redlin MR, Edmonds RL (1987) Conifer and angiosperm fine-root biomass in relation to stand age and site productivity in Douglas-fir forests. J Ecol 75:857–870. http://www.jstor.org/stable/2260210
  52. Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics grouped by climate, climatic forest type and species. Plant Soil 187:159–219. doi: 10.1007/BF00017088 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Timo Domisch
    • 1
  • Leena Finér
    • 1
  • Seid Muhie Dawud
    • 2
  • Lars Vesterdal
    • 2
  • Karsten Raulund-Rasmussen
    • 2
  1. 1.Joensuu UnitFinnish Forest Research InstituteJoensuuFinland
  2. 2.Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations