Abstract
Plants often recruit frugivorous animals to transport their seeds; however, gut passage can have varying effects on plant fitness depending on the physical and chemical treatment of the seed, the distance seeds are transported, and the specific site of deposition. One way in which plants can mediate the effects of gut passage on fitness is by producing fruit secondary compounds that influence gut-retention time (GRT). Using frugivorous bats (Carollia perspicillata: Phyllostomidae) and Neotropical plants in the genus Piper, we compared GRT of seeds among five plant species (Piper colonense, Piper peltatum, Piper reticulatum, Piper sancti-felicis, and Piper silvivagum) and investigated the role of fruit amides (piperine, piplartine and whole fruit amide extracts from P. reticulatum) in mediating GRT. Our results showed interspecific differences in GRT; P. reticulatum seeds passed most slowly, while P. silvivagum and P. colonense seeds passed most rapidly. Piplartine and P. reticulatum amide extracts decreased GRT, while piperine had no effect. In addition, we examined the effects of GRT on seed germination success and speed in laboratory conditions. For germination success, the effects were species specific; germination success increased with GRT for P. peltatum but not for other species. GRT did not influence germination speed in any of the species examined. Plant secondary compounds have primarily been studied in the context of their defensive role against herbivores and pathogens, but may also play a key role in mediating seed dispersal interactions.
Similar content being viewed by others
References
Allaire JJ, Horner J, Marti V, Porte N (2014) Markdown: markdown rendering for R. R package version 0.7. http://cran.r-project.org/web/packages/markdown/
Amitai O, Holtze S, Barkan S, Amichai E, Korine C, Pinshow B, Voigt CC (2010) Fruit bats (Pteropodidae) fuel their metabolism rapidly and directly with exogenous sugars. J Exp Biol 213:2693–2699. doi:10.1242/jeb.043505
Baldwin JW, Whitehead SR (2014) Data from: Fruit secondary compounds mediate the retention time of seeds in the guts of Neotropical fruit bats. Dryad Digital Repository. doi:10.5061/dryad.51q1p
Bartón K (2013) MuMIn: multimodel inference. R package version 1.9.13. http://cran.r-project.org/web/packages/MuMIn/
Bates D, Mächler M, Bolker B (2014) lme4: Linear mixed-effects models using S4 classes. R package version 1.1-5. http://cran.r-project.org/web/packages/lme4/
Bizerril MX, Raw A (1998) Feeding behavior of bats and the dispersal of Piper arboreum seeds in Brazil. J Trop Ecol 14:109–114. doi:10.1017/S0266467498000108
Bodmer R (1991) Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica 23:255–261
Bolker B (2008) Ecological models and data in R. Princeton University Press, Princeton
Bolker B, R Development Core Team (2014) bbmle: tools for general maximum likelihood estimation. R package version 1.0.16. http://cran.r-project.org/web/packages/bbmle/
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens M, Henry H, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008
Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach, 1st edn. Springer, New York
Chaves MCD, Santos B (2002) Constituents from Piper marginatum fruits. Fitoterapia 73:547–549. doi:10.1016/S0367-326X(02)00167-3
Cipollini M (2000) Secondary metabolites of vertebrate-dispersed fruits: evidence for adaptive functions. Rev Chil Hist Nat 73:421–440. doi:10.4067/S0716-078X2000000300006
Cipollini M, Levey DJ (1997) Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal. Am Nat 150:346–372
Cosyns E, Delporte A, Lens L, Hoffmann M (2005) Germination success of temperate grassland species after passage through ungulate and rabbit guts. J Ecol 93:353–361. doi:10.1111/j.0022-0477.2005.00982.x
Daws MI, Burslem D, Crabtree LM, Kirkman P, Mullins CE, Dallin JW (2002) Differences in seed germination responses may promote coexistence of four sympatric Piper species. Funct Ecol 16:258–267. doi:10.1046/j.1365-2435.2002.00615.x
de O Chaves MC, de F Júnior AG, d O Santos BV (2003) Amides from Piper tuberculatum fruits. Fitoterapia 74:181–183. doi:10.1016/S0367-326X(02)00321-0
Dyer LA, Dodson CD, Stireman JO, Tobler MA, Smilanich AM, Fincher RM, Letourneau DK (2003) Synergistic effects of three Piper amides on generalist and specialist herbivores. J Chem Ecol 29:2499–2514. doi:10.1023/A:1026310001958
Dyer LA, Richards J, Dodson CD (2004a) Isolation, synthesis, and evolutionary ecology of Piper amides. In: Dyer L, Palmer (eds) Piper: a model genus for studies in phytochemistry, ecology, and evolution. Kluwer Academic, New York, pp 117–139. doi: 10.1007/978-0-387-30599-8_7
Dyer LA, Letourneau DK, Dodson CD, Tobler MA, Stireman JO, Hsu A (2004b) Ecological causes and consequences of variation in defensive chemistry of a Neotropical shrub. Ecology 85:2795–2803. doi:10.1890/03-0233
Estrada-Villegas S, Perez-Torres J, Stephenson P (2007) Seed dispersal by bats in a mountain forest edge. Ecotropica 20:1–14
Felipe F, Filho J, Silveria J, Uchoa D, Pessoa O, Viana G (2007) Piplartine, an amide alkaloid from Piper tuberculatum, presents anxiolytic and antidepressant effects in mice. Phytomedicine 14:605–612. doi:10.1016/j.phymed.2006.12.015
Fleming TH (1988) The short-tailed fruit bat—a study of plant-animal interactions, 2nd edn. University of Chicago Press, Chicago
Fleming TH (2004) Dispersal ecology of Neotropical Piper shrubs and treelets. In: Dyer L, Palmer (eds) Piper: a model genus for studies in phytochemistry, ecology, and evolution. Kluwer Academic, New York, pp 58–77. doi: 10.1007/978-0-387-30599-8_4
Fleming TH, Heithaus ER (1981) Frugivorous bats, seed shadows, and the structure of tropical forests. Biotropica 13:45–53
Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. J Ecol 62:881–919
Freeland WJ, Calcott PH, Anderson LR (1985) Tannins and saponin: interaction in herbivore diets. Biochem Syst Ecol 13:189–193. doi:10.1016/0305-1978(85)90078-X
Galindo-Gonzalez J, Guevara S, Sosa VJ (2000) Bat- and bird-generated seed-rain at isolated trees in pastures in a tropical rainforest. Conserv Biol 16:1693–1703. doi:10.1111/j.1523-1739.2000.99072.x
Gentry AH (1990) Four neotropical rainforests. Yale University Press, New Haven
Hlavackova L, Urbanova A, Ulicna O, Janega P, Cerna A, Babal P (2010) Piperine, active substance of black pepper, alleviates hypertension induced by NO synthase inhibition. Bratisl Med J 111:426–431
Holdridge LR (1967) Life zone ecology, 1st edn. Tropical Science Center, San José
Hothorn T, Bretz F, Westfall P, Heilberger RM, Schuetzenmeister A (2014) multcomp: simultaneous inference in general parametric models. R package version 1.3-2. http://cran.r-project.org/web/packages/multcomp/
Howe H, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–208. doi:10.1146/annurev.es.13.110182.001221
Izhaki I (2002) Emodin–a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217. doi:10.1046/j.1469-8137.2002.00459.x
Janzen DH (1981) Enterolobium cyclocarpum seed passage rate and survival in horses, Costa Rican Pleistocene seed dispersal agents. Ecology 62:593–601. doi:10.2307/1937726
Kato MJ, Furlan M (2007) Chemistry and evolution of the Piperaceae. Pure Appl Chem 79:529–538. doi:10.1351/pac200779040529
Levey DJ, Tewksbury JJ, Izhaki I, Tsahar R, Haak DC (2007) Evolutionary ecology of secondary compounds in ripe fruit: case studies with capsaicin and emodin. In: Dennis AJ, Schupp EW, Green RJ, Westcott DA (eds) Seed dispersal: theory and its application in a changing world. CABI, United Kingdom, pp 37–59. doi: 10.1079/9781845931650.0000
Liu Y, Yadev VR, Aggarwal BB, Nair MG (2010) Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid-peroxidation and nuclear transcription factor-kappa-B. Nat Prod Commun 5:1253–1257
Loiselle BA (1990) Seeds in droppings of tropical fruit-eating birds: importance of considering seed composition. Oecologia 82:494–500. doi:10.1007/BF00319792
Lopez JE, Vaughan C (2004) Observations on the role of frugivorous bats as seed dispersers in Costa Rican secondary humid forests. Acta Chiropterol 6:111–119. doi:10.3161/001.006.0109
Mason JR, Bean NJ, Shah PS, Clark L (1991) Taxon-specific differences in responsiveness to capsaicin and several analogues: correlates between chemical structure and behavioral aversiveness. J Chem Ecol 17:2539–2551. doi:10.1007/BF00994601
McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (1994) La Selva, Ecology and natural history of a neotropical rainforest, 1st edn. University of Chicago Press, Chicago
McKey D (1975) The ecology of coevolved seed dispersal systems. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 159–191
Mishra P, Sinha S, Guru SK, Bhushan S, Vishwakarma RA, Ghosal S (2011) Two new amides with cytotoxic activity from the fruits of Piper longum. J Asian Nat Prod Res 13:143–148. doi:10.1080/10286020.2010.546789
Morandim AA, Pin AR, Pietro NA, Alecio AC, Kato MJ, Young CM, Oliveira JW, Furlan M (2010) Composition and screening of antifungal activity against Cladosporium sphaerospermum and Cladosporium cladosporioides of essential oils of leaves and fruits of Piper species. Afr J Biotechnol 9:6135–6139. doi:10.5897/AJB09.1956
Murray KG, Russell S, Picone CM, Winnett-Murray K, Sherwood W, Kuhlmann ML (1994) Fruit laxatives and seed passage rates in frugivores: consequences for plant reproductive success. Ecology 75:989–994. doi:10.2307/1939422
Muscarella R, Fleming TH (2007) The role of frugivorous bats in tropical forest succession. Biol Rev Camb Philos 82:573. doi:10.1111/j.1469-185X.2007.00026.x
Nerurkar PV, Dragull K, Tang C-S (2004) In vitro toxicity of kava alkaloid, pipermethystine, in HepG2 cells compared to kavalactones. Toxicol Sci 79:106–111. doi:10.1093/toxsci/kfh067
O’Hara RB, Kotze DJ (2010) Do not log-transform count data. MEE 1:118–122. doi:10.1111/j.2041-210X.2010.00021.x
Palmeirim JM, Gorchoy DL, Stoleson S (1989) Trophic structure of a neotropical frugivore community: is there competition between birds and bats? Oecologia 79:403–411. doi:10.1007/BF00384321
Parmar VS, Jain SC, Bisht KS, Jain R, Taneja P, Jha A, Tyagi OD, Prasa AK, Wengel J, Olsen CE (1997) Phytochemistry of the genus Piper. Phytochemistry 46:597–673. doi:10.1016/S0031-9422(97)00328-2
R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. ISBN3-900051-07-0. http://www.R-project.org/
Rali T, Wossa SW, Leach DN, Waterman PG (2007) Volatile chemical constituents of Piper aduncum L. and Piper gibbilimbum C. DC (Piperaceae) from Papua New Guinea. Molecules 12:389–394. doi:10.3390/12030389
Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–301. doi:10.1093/jxb/10.2.290
Richards LA, Dyer LA, Smilanich AM, Dodson CD (2010) Synergistic effects of amides from two Piper species on generalist and specialist herbivores. J Chem Ecol 36:1105–1113. doi:10.1007/s10886-010-9852-9
Rodrigues RV, Lanznaster D, Tagliari D, Balbinot L, Gadotti V, Alves V, Facundo V, Santos A (2009) Antinociceptive effect of crude extract, fractions and three alkaloids obtained from fruits of Piper tuberculatum. Biol Pharm Bull 32:1809–1812. doi:10.1248/bpb.32.1809
Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188:333–353. doi:10.1111/j.1469-8137.2010.03402.x
Scott IM, Puniani E, Durst T, Phelps D, Merali S, Assabgui RA, Sanchez-Vindas P, Poveda L, Philogene BJR, Arnason JT (2002) Insecticidal activity of Piper tuberculatum Jacq. extracts: synergistic interaction of piperamides. Agric For Entomol 4:137–144. doi:10.1046/j.1461-9563.2002.00137.x
Sharma G, Mishra B (2007) Piperine—a therapeutic agent and a bioavailability enhancer. Pharm Res 6:129–133
Shilton LA, Altringham JD, Compton SG, Whittaker RJ (1999) Old world fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proc R Soc B 266:219–223. doi:10.1098/rspb.1999.0625
Siddiqui B, Gulzar T, Begum S, Afshan F, Sattar FA (2005) Insecticidal amides from fruits of Piper nigrum Linn. Nat Prod Res 19:143–150. doi:10.1080/14786410410001704750
Struempf HM, Schondube JE, del Rio CM (1999) The cyanogenic glycoside amygdalin does not deter consumption of ripe fruit by cedar waxwings. Auk 116:749–758
Tewksbury JJ, Nabhan GP (2001) Seed dispersal: directed deterrence by capsaicin in chillies. Nature 412:403–404. doi:10.1038/35086653
Tewksbury JJ, Levey DJ, Huizinga M, Haak DC, Traveset A (2008a) Costs and benefits of capsaicin-mediated control of gut retention in dispersers of wild chilies. Ecology 89:107–117. doi:10.1890/07-0445.1
Tewksbury JJ, Reagan KM, Machnicki NJ, Carlo TA, Haak DC, Peñaloza ALC, Levey DJ (2008b) Evolutionary ecology of pungency in wild chilies. Proc Natl Acad Sci 105:11808–11811. doi:10.1073/pnas.0802691105
Thies W, Kalko E, Schnitzler H (1998) The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on Piper. Behav Ecol Sociobiol 42:397–409. doi:10.1007/s002650050454
Timm RM (1994) Mammals. In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GA (eds) La Selva: ecology and natural history of a Neotropical rain forest. University of Chicago Press, Chicago, pp 394–397
Traveset A (1998) Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspect Plant Ecol 1:151–190. doi:10.1078/1433-8319-00057
Tsoar A, Shohami D, Nathan R (2011) A movement ecology approach to study seed dispersal and plant invasion: an overview and application of seed dispersal by fruit bats. In: Richardson DR (eds) Fifty years of invasion ecology: the legacy of Charles Elton, pp 101–119. doi: 10.1002/9781444329988.ch9
van der Pijl L (1982) Principles of dispersal in higher plants, 3rd edn. Springer, New York
Vasques da Silva R, Navickiene HM, Kato MJ, Bolzani S, Meda CI, Young MC, Furlan M (2002) Antifugal amides from Piper arboreum and Piper tuberculatum. Phytochemistry 59:521–527. doi:10.1016/S0031-9422(01)00431-9
Voigt CC, Capps KA, Dechmann DKN, Michener RH, Kunz TH (2008) Nutrition or detoxification: why bats visit mineral licks of the Amazonian rainforest. PLoS One 3:e2011. doi:10.1371/journal.pone.0002011
Wahaj SA, Levey DJ, Sanders AK, Cipollini ML (1998) Control of gut retention time by secondary metabolites in ripe Solanum fruits. Ecology 79:2309–2319. doi:10.2307/176824
Whitehead SR (2013) Ecological costs and benefits of secondary metabolites in animal-dispersed fruits. PhD dissertation, Department of Ecology and Evolutionary Biology, University of Colorado
Whitehead SR, Bowers MD (2013) Evidence for the adaptive significance of secondary compounds in vertebrate-dispersed fruits. Am Nat 182(5):563–577. doi:10.1086/673258
Whitehead SR, Bowers MD (2014) Chemical ecology of fruit defense: synergistic and antagonistic interactions among amides from Piper. Funct Ecol. doi:10.1111/1365-2435.12250
Whitehead SR, Jeffrey CS, Leonard MD, Dodson CD, Dyer LA, Bowers MD (2013) Patterns of secondary metabolite allocation to fruits and seeds in Piper reticulatum. J Chem Ecol 39:1373–1384
Wickham H (2009) ggplot2: elegant graphics for data analysis, 1st edn. Springer, New York
Xie Y (2014) knitr: a general-purpose package for dynamic report generation in R. R package version 1.6. http://cran.r-project.org/web/packages/knitr/
Yang Y, Lee SG, Lee HK, Kim MK, Lee SH, Lee HS (2002) A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. J Agric Food Chem 50:3765–3767. doi:10.1021/jf011708f
Zuur AF, Ieno EN, Walker NJ, Savliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R, 1st edn. Springer, New York
Acknowledgments
María Fernanda Obando Quesada provided invaluable assistance in the field. Martina Nagy assisted with animal care. Deane Bowers provided laboratory mentorship, and Larry Winship helped with the germination experiments. The Sistema Nacional de Areas de Conservacion (SINAC)-Ministerio de Ambiente y Energía kindly allowed us to conduct the fieldwork in Costa Rica (Resoluciónes 017-2011-SINAC and 075-2012-SINAC). The Organization for Tropical Studies and La Selva Biological Station staff provided logistical support. This project was made possible by a National Science Foundation-Research Experience for Undergraduates grant DBI 0851933 awarded to J. W. B. through the Organization for Tropical Studies. Partial funding was also provided by National Science Foundation grant DEB 1210884 to S. R. W. and Deane Bowers, and a Samuel Morris Endowed Fund grant (2011) to J. W. B. The authors declare no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Colin Mark Orians.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Baldwin, J.W., Whitehead, S.R. Fruit secondary compounds mediate the retention time of seeds in the guts of Neotropical fruit bats. Oecologia 177, 453–466 (2015). https://doi.org/10.1007/s00442-014-3096-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00442-014-3096-2