, Volume 176, Issue 4, pp 1075–1086 | Cite as

The interactions between plant life form and fungal traits of arbuscular mycorrhizal fungi determine the symbiotic community

  • Álvaro López-GarcíaEmail author
  • Concepción Azcón-Aguilar
  • José M. Barea
Plant-microbe-animal interactions - Original research


Arbuscular mycorrhizal (AM) fungi have traditionally been considered generalist symbionts. However, an increasing number of studies are pointing out the selectivity potential of plant hosts. Plant life form, determined by plant life history traits, seems to drive the AM fungal community composition. The AM fungi also exhibit a wide diversity of functional traits known to be responsible for their distribution in natural ecosystems. However, little is known about the role of plant and fungal traits driving the resultant symbiotic assemblages. With the aim of testing the feedback relationship between plant and fungal traits on the resulting AM fungal community, we inoculated three different plant life forms, i.e. annual herbs, perennial herbs and perennial semi-woody plants, with AM fungal communities sampled in different seasons. We hypothesized that the annual climate variation will induce changes in the mean traits of the AM fungal communities present in the soil throughout the year. Furthermore, the association of plants with different life forms with AM fungi with contrasting life history traits will show certain preferences according to reciprocal traits of the plants and fungi. We found changes in the AM fungal community throughout the year, which were differentially disrupted by disturbance and altered by plant growth form and plant biomass. Both plant and fungal traits clearly contributed to the resultant AM fungal communities. The revealed process can have implications for the functioning of ecosystems since changes in dominant plant life forms or climatic variables could influence the traits of AM fungal communities in soil and hence ecosystem processes.


Life history traits Terminal restriction fragment length polymorphism Symbiosis assembly Mediterranean environments Functional diversity 



Dr Álvaro López-García thanks the Formación de Personal Investigador Programme (Ministerio de Ciencia e Innovación, Spain) for financial support. This research was supported by the Spanish government under the Plan Nacional de I+D+I (project CGL-2009-08825). We sincerely thank Dr John N. Klironomos and Dr Alexander Koch for their suggestions in the early stages of the experimental design and Mr Domingo Álvarez for technical assistance. We also thank the Consejería de Medio Ambiente, Junta de Andalucía (Spain) for permission to work in the Sierra de Baza Natural Park as well as the Real Jardín Botánico (Madrid, CSIC) and the Banco de Germoplasma Vegetal Andaluz (Córdoba, Junta de Andalucía) for providing us with the seeds used in this study.

Supplementary material

442_2014_3091_MOESM1_ESM.pdf (109 kb)
Supplementary material 1 (PDF 108 kb)
442_2014_3091_MOESM2_ESM.pdf (17 kb)
Supplementary material 2 (PDF 16 kb)


  1. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi: 10.1111/j.1461-0248.2006.00926.x PubMedCrossRefGoogle Scholar
  2. Barea JM, Pozo MJ, López-Ráez JA, Aroca R, Ruíz-Lozano JM, Ferrol N, Azcón R, Azcón-Aguilar C (2013) Mycorrhizas and their significance in promoting soil-plant systems sustainability against environmental stresses. In: Rodelas B, González-López J (eds) Beneficial plant-microbial interactions: ecology and applications. CR, USA, pp 353–387CrossRefGoogle Scholar
  3. Bennet AE, Daniell TJ, Öpik M, Davison J, Moora M, Zobel M, Selosse MA, Evans D (2013) Arbuscular mycorrhizal fungal networks vary throughout the growing season and between successional stages. PLoS One 8:e83241. doi: 10.1371/journal.pone.0083241 CrossRefGoogle Scholar
  4. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos JN, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478. doi: 10.1016/j.tree.2010.05.004 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Blanca G, Cabezudo B, Cueto M, Fernández López C, Morales Torres C (2009) Flora Vascular de Andalucía Oriental. Consejería de Medio Ambiente, Junta de Andalucía, SevillaGoogle Scholar
  6. Brachmann A, Parniske M (2006) The most widespread symbiosis on Earth. PLoS Biol 4:e239. doi: 10.1371/journal.pbio.0040239 PubMedCentralCrossRefGoogle Scholar
  7. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. doi: 10.1007/s11104-008-9877-9 CrossRefGoogle Scholar
  8. Burke DJ, Martin KJ, Rygiewicz PT, Topa MA (2006) Relative abundance of ectomycorrhizas in a managed loblolly pine (Pinus taeda) genetics plantation as determined through terminal restriction fragment length polymorphism profiles. Can J Bot 84:924–932. doi: 10.1139/B06-046 CrossRefGoogle Scholar
  9. Cakan H, Karatas C (2006) Interactions between mycorrhizal colonization and plant life forms along the successional gradient of coastal sand dunes in the eastern Mediterranean, Turkey. Ecol Res 21:301–310. doi: 10.1007/s11284-005-0134-x CrossRefGoogle Scholar
  10. Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand the life history of mycorrhizal fungi. Trends Plant Sci 18:484–491. doi: 10.1016/j.tplants.2013.05.001 PubMedCrossRefGoogle Scholar
  11. Clarke K (1993) Non parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  12. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi: 10.1111/j.1461-0248.2008.01219.x PubMedCrossRefGoogle Scholar
  13. Davison J, Öpik M, Daniell TJ, Moora M, Zobel M (2011) Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiol Ecol 78:103–115. doi: 10.1111/j.1574-6941.2011.01103.x PubMedCrossRefGoogle Scholar
  14. Davison J, Öpik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One 7:e41938. doi: 10.1371/journal.pone.0041938 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Denison RF, Kiers ET (2011) Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr Biol 21:r775–r785. doi: 10.1016/j.cub.2011.06.018 PubMedCrossRefGoogle Scholar
  16. Dickie IA, FitzJohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270. doi: 10.1007/s00572-007-0129-2 PubMedCrossRefGoogle Scholar
  17. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. doi: 10.2307/2963459 Google Scholar
  18. Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804. doi: 10.1111/j.1469-8137.2010.03636.x PubMedCrossRefGoogle Scholar
  19. Franson RL, Bethlenfalvay GJ (1989) Infection unit method of vesicular-arbuscular mycorrhizal propagule determination. Soil Sci Sco Am J 53:754–756CrossRefGoogle Scholar
  20. Gill RA, Burke IC (1999) Ecosystem consequences of plant life form changes at three sites in the semiarid United States. Oecologia 121:551–563. doi: 10.1007/s004420050962 CrossRefGoogle Scholar
  21. Grime JP (1977) Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194. doi: 10.1086/283244 CrossRefGoogle Scholar
  22. Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422. doi: 10.1038/328420a0 CrossRefGoogle Scholar
  23. Hart MM, Reader JR (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344. doi: 10.1046/j.0028-646X.2001.00312.x CrossRefGoogle Scholar
  24. Heinemeyer A, Ridway KP, Edwards EJ, Benham DG, Young JPW, Fitter AH (2003) Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Glob Change Biol 10:52–64. doi: 10.1046/j.1529-8817.2003.00713.x CrossRefGoogle Scholar
  25. Hirsch PR, Miller AJ, Dennis PG (2013) Do root exudates exert more influence on rhizosphere bacterial community structure than other rhizodeposits? In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 229–242CrossRefGoogle Scholar
  26. Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176. doi:10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2CrossRefGoogle Scholar
  27. Jansa J, Erb A, Oberholzer HR, Smilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118–2135. doi: 10.1111/mec.12706 PubMedCrossRefGoogle Scholar
  28. Jasper DA, Abbott LK, Robson AD (1989) Soil disturbance reduces the infectivity of external hyphae of vesicular arbuscular mycorrhizal fungi. New Phytol 112:93–99. doi: 10.1111/j.1469-8137.1989.tb00313.x CrossRefGoogle Scholar
  29. Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908. doi:10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2CrossRefGoogle Scholar
  30. Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515. doi: 10.1046/j.1469-8137.2003.00938.x CrossRefGoogle Scholar
  31. Kivlin SN, Hawkes C (2011) Differentiating between effects of invasion and diversity: impacts of aboveground plant communities on belowground fungal communities. New Phytol 189:526–535. doi: 10.1111/j.1469-8137.2010.03494.x PubMedCrossRefGoogle Scholar
  32. Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163. doi: 10.1007/s00572-004-0307-4 PubMedCrossRefGoogle Scholar
  33. König S, Wubet T, Dormann CF, Hempel S, Renker C, Buscot F (2010) TaqMan Real-Time PCR assays to assess arbuscular mycorrhizal responses to field manipulation of grassland biodiversity: effects of soil characteristics, plant species richness, and functional traits. Appl Environ Microbiol 76:3765–3775. doi: 10.1128/AEM.02951-09 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349. doi: 10.1111/j.1574-6941.2008.00531.x PubMedCrossRefGoogle Scholar
  35. Lekberg Y, Gibbons SM, Rosendahl S, Ramsey PW (2013) Severe plant invasions can increase mycorrhizal fungal abundance and diversity. ISME J 7:1424–1433. doi: 10.1038/ismej.2013.41 PubMedCentralPubMedCrossRefGoogle Scholar
  36. López-Bermúdez F, Albadalejo J, Stocking MA, Díaz E (1990) Factores ambientales de la degradación del suelo en el área mediterránea. In: Albadalejo J, Stocking MA, Díaz E (eds) Degradation and rehabilitation of soil in Mediterranean environmental conditions. CSIC, Murcia, pp 15–45Google Scholar
  37. López-García A, Hempel S, Miranda JD, Rillig MC, Barea JM, Azcón-Aguilar C (2013) The influence of environmental degradation processes on the arbuscular mycorrhizal fungal community associated with yew (Taxus baccata L.), an endangered tree species from Mediterranean ecosystems of Southeast Spain. Plant Soil 370:355–366. doi: 10.1007/s11104-013-1625-0 CrossRefGoogle Scholar
  38. López-García A, Palenzuela J, Barea JM, Azcón-Aguilar C (2014) life history strategies of arbuscular mycorrhizal fungi determine succession into roots of Rosmarinus officinalis L., a characteristic woody perennial plant species from Mediterranean ecosystems. Plant Soil 379:247–260. doi: 10.1007/s11104-014-2060-6 CrossRefGoogle Scholar
  39. Martínez-García LB, Pugnaire FI (2011) Arbuscular mycorrhizal fungi host preference and site effects in two plant species in a semiarid environment. Appl Soil Ecol 48:313–317. doi: 10.1016/j.apsoil.2011.04.003 CrossRefGoogle Scholar
  40. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297. doi: 10.1111/j.1461-0248.2006.00926.x CrossRefGoogle Scholar
  41. Merryweather J, Fitter A (1998) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta. II.. Seasonal and spatial patterns of fungal populations. New Phytol 138:131–142. doi: 10.1046/j.1469-8137.1998.00889.x CrossRefGoogle Scholar
  42. Moora M, Berger S, Davison J, Öpik M, Bommarco R, Bruelheide H, Kühn Y, Kunin WE, Metsis M, Rortais A, Vanatoa A, Vanatoa E, Stout JC, Truusa M, Westphal C, Zobel M, Walther GR (2011) Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. J Biogeogr 38:1305–1317. doi: 10.1111/j.1365-2699.2011.02478.x CrossRefGoogle Scholar
  43. Mummey DL, Rillig MC (2008) Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. FEMS Microbiol Ecol 64:260–270. doi: 10.1111/j.1574-6941.2008.00475.x PubMedCrossRefGoogle Scholar
  44. Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:83–90. doi: 10.1007/s11104-004-2066-6 CrossRefGoogle Scholar
  45. Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268. doi: 10.1016/j.agee.2009.07.008 CrossRefGoogle Scholar
  46. Oehl F, Laczko E, Bogenrieder A, Stahr K, Boesch R, van der Heijden MGA, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738. doi: 10.1016/j.soilbio.2010.01.006 CrossRefGoogle Scholar
  47. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H. 2011. Vegan: community ecology package. R package version 2.0-1.
  48. Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specifity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437. doi: 10.1111/j.1469-8137.2009.02920.x PubMedCrossRefGoogle Scholar
  49. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davidson J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. doi: 10.1111/j.1469-8137.2010.03334.x PubMedCrossRefGoogle Scholar
  50. Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc R Soc B 276:4237–4245. doi: 10.1098/rspb.2009.1015 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Powell JR, Anderson IC, Rillig MC (2013) A new tool of the trade: plant-trait based approaches in microbial ecology. Plant Soil 365:35–40. doi: 10.1007/s11104-012-1581-0 CrossRefGoogle Scholar
  52. Raunkiær C (1934) Life forms of plants and statistical plant geography. Claredon, OxfordGoogle Scholar
  53. Roberts DW. 2010. labdsv: Ordination and multivariate analysis for ecology. R package version 1.4-1.
  54. Rosendahl S, Stukenbrock EH (2004) Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences. Mol Ecol 13:3179–3186. doi: 10.1111/j.1365-294.2004.02295.x PubMedCrossRefGoogle Scholar
  55. Sánchez-Castro I, Ferrol N, Barea JM (2012a) Analyzing the community composition of arbuscular mycorrhizal fungi colonizing the roots of representative shrubland species in a Mediterranean ecosystem. J Arid Environ 80:1–9. doi: 10.1016/j.jaridenv.2011.12.010 CrossRefGoogle Scholar
  56. Sánchez-Castro I, Ferrol N, Cornejo P, Barea JM (2012b) Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza 22:449–460. doi: 10.1007/s00572-011-0421-z PubMedCrossRefGoogle Scholar
  57. Santos-González JC, Finlay RD, Tehler A (2007) Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl Environ Microbiol 73:5613–5623. doi: 10.1128/AEM.00262-07 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Scheublin TR, Ridgway KP, Young JPW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246. doi: 10.1128/AEM.70.10.6240-6246.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Schnoor TK, Lekberg Y, Rosendahl S, Olsson PA (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21:211–220. doi: 10.1007/s00572-010-0325-3 PubMedCrossRefGoogle Scholar
  60. Schulze ED (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. II. Encyclopedia of plant physiology. Springer, Berlin, pp 615–676CrossRefGoogle Scholar
  61. Schüßler A, Walker C (2011) Evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms. Springer, Berlin, pp 163–185CrossRefGoogle Scholar
  62. Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2011) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14. doi: 10.1007/s00572-007-0147-0 CrossRefGoogle Scholar
  63. Torrecillas E, Alguacil MM, Roldán A, Díaz G, Montesinos-Navarro A, Torres MP (2014) Modularity reveals the tendency of arbuscular mycorrhizal fungi to interact differently with generalist and specialist plant species in gypsum soils. Appl Environ Microbiol 80:5457–5466. doi: 10.1128/AEM.01358-14 PubMedCrossRefGoogle Scholar
  64. Urcelay C, Díaz S (2003) The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecol Lett 6:388–391. doi: 10.1046/j.1461-0248.2003.00444.x CrossRefGoogle Scholar
  65. Urcelay C, Díaz S, Gurvich DE, Chapin FS, Cuevas E, Domínguez LS (2009) Mycorrhizal community resilience in response to experimental plant functional type removals in a woody ecosystem. J Ecol 97:1291–1301. doi: 10.1111/j.1365-2745.2009.01582.x CrossRefGoogle Scholar
  66. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72. doi: 10.1038/23932 CrossRefGoogle Scholar
  67. van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752. doi: 10.1111/j.1469-8137.2006.01862.x PubMedCrossRefGoogle Scholar
  68. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095. doi: 10.1046/j.1365-294X.2003.01967.x PubMedCrossRefGoogle Scholar
  69. Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562. doi: 10.1111/j.1469-8137.2006.01854.x PubMedCrossRefGoogle Scholar
  70. Yang H, Zang Y, Yuan Y, Tang J, Chen X (2012) Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:50–62. doi: 10.1186/1471-2148-12-50 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Álvaro López-García
    • 1
    • 2
    Email author
  • Concepción Azcón-Aguilar
    • 1
  • José M. Barea
    • 1
  1. 1.Soil Microbiology and Symbiotic Systems DepartmentCSIC-Estación Experimental del ZaidínGranadaSpain
  2. 2.Section for Terrestrial Ecology, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations