Skip to main content

Metabolic stoichiometry and the ecology of fear in Trinidadian guppies: consequences for life histories and stream ecosystems

Abstract

Consumer-driven nutrient recycling, the release of chemicals as byproducts and excesses of consumer physiology, can alter ecosystems by changing the availability of limiting nutrients at the base of the food web. The mere presence of predators can alter consumer physiology by restricting food intake and inducing stress. Predation risk, then, can influence ecosystem function by modifying the role of prey as nutrient recyclers, yet there are few empirical tests of how predation risk alters nutrient recycling by prey. Here, we present the results of a test for the effects of predation risk on the C and N budgets of Trinidadian guppies (Poecilia reticulata). We reared female guppies for 7 weeks on diets of varying quality, and we compared control individuals to those exposed continuously to chemical cues emitted by a guppy predator, Crenicichla alta. We measured food consumption, growth rate, tissue elemental stoichiometry and N excretion by guppies on all treatments. Guppies strongly reduced food intake in the presence of predator cues; however, cue-exposed guppies assimilated nutrients more efficiently than controls. Specifically, cue-exposed guppies strongly increased N retention efficiency while only moderately increasing C efficiency. Consequently, guppies reared with predator cues excreted 39 % less N than control guppies. We suggest that reduced foraging, enhanced nutrient efficiency, and decreased N excretion are adaptive responses to the extrinsic mortality threat posed by guppy predators. The resulting substantial reduction in N excretion by guppies may influence ecosystem function in natural streams by reducing the supply of a limiting nutrient.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abrahams M, Dill L (1989) A determination of the energetic equivalence of the risk of predation. Ecology 70:999–1007

    Article  Google Scholar 

  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  3. Akpınar Z, Sevgili H, Demir A, et al. (2011) Effects of dietary lipid levels on growth, nutrient utilization, and nitrogen and carbon balances in shi drum (Umbrina cirrosa L.). Aquac Int 20:131–143. doi:10.1007/s10499-011-9447-7

    Article  Google Scholar 

  4. Alsop D, Wood C (1997) The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss). J Exp Biol 200:2337–2346

    PubMed  Google Scholar 

  5. Barry MJ, Syal S (2012) Metabolic responses of tadpoles to chemical predation cues. Hydrobiologia 700:267–276. doi:10.1007/s10750-012-1236-4

    Article  Google Scholar 

  6. Bassar RD, Marshall MC, López-Sepulcre A, et al. (2010) Local adaptation in Trinidadian guppies alters ecosystem processes. Proc Natl Acad Sci USA 107:3616–3621. doi:10.1073/pnas.0908023107

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  7. Bassar RD, Ferriere R, López-Sepulcre A, et al. (2012) Direct and indirect ecosystem effects of evolutionary adaptation in the Trinidadian guppy (Poecilia reticulata). Am Nat 180:167–185. doi:10.1086/666611

    PubMed  Article  Google Scholar 

  8. Beckerman P, Uriarte M, Schmitz OJ (1997) Experimental evidence for a behavior-mediated trophic cascade in a terrestrial food chain. Proc Natl Acad Sci USA 94:10735–10738

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. Bolger T, Connolly P (1989) The selection of suitable indices for the measurement and analysis of fish condition. J Fish Biol 34:171–182

    Article  Google Scholar 

  10. Brown JS, Kotler BP (2004) Hazardous duty pay and the foraging cost of predation. Ecol Lett 7:999–1014. doi:10.1111/j.1461-0248.2004.00661.x

    Article  Google Scholar 

  11. Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639

    Article  Google Scholar 

  12. Cherel Y, Robin JP, Heitz A, et al. (1992) Relationships between lipid availability and protein utilization during prolonged fasting. J Comp Physiol B 162:305–313

    PubMed  Article  CAS  Google Scholar 

  13. Clinchy M, Sheriff MJ, Zanette LY (2013) Predator-induced stress and the ecology of fear. Funct Ecol 27:56–65

    Article  Google Scholar 

  14. Company R, Calduch-Giner J, Kaushik S, Perez-Sanchez J (1999) Growth performance and adiposity in gilthead sea bream (Sparus aurata): risks and benefits of high energy diets. Aquaculture 171:279–292

    Article  CAS  Google Scholar 

  15. Dodds W, Whiles M (2010) Nitrogen, sulfur, phosphorus, and other nutrients. Freshwater Ecology, 2nd edn. Academic Press, Waltham p 451

    Google Scholar 

  16. Dugatkin L, Godin J-GJ (1992) Predator inspection, shoaling and foraging under predation hazard in the Trinidadian guppy, Poecilia reticulata. Environ Biol Fishes 34:265–276. doi:10.1007/BF00004773

    Article  Google Scholar 

  17. El-Sabaawi RW, Zandonà E, Kohler TJ, et al. (2012) Widespread intraspecific organismal stoichiometry among populations of the Trinidadian guppy. Funct Ecol 26:666–676. doi:10.1111/j.1365-2435.2012.01974.x

    Article  Google Scholar 

  18. Elser J, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80:735–751

    Article  Google Scholar 

  19. Fischer EK, Harris RM, Hofmann H, Hoke KL (2014) Predator exposure alters stress physiology in guppies across timescales. Horm Behav 65:165–172. doi:10.1016/j.yhbeh.2013.12.010

    PubMed  Article  CAS  Google Scholar 

  20. Forsberg OI (1997) The impact of varying feeding regimes on oxygen consumption and excretion of carbon dioxide and nitrogen in post-smolt Atlantic salmon Salmo salar L. Aquacult Res 28:29–41. doi:10.1111/j.1365-2109.1997.tb01312.x

    Article  Google Scholar 

  21. Fraser DF, Gilliam JF (1987) Feeding under predation hazard: response of the guppy and Hart’s rivulus from sites with contrasting predation hazard. Behav Ecol Sociobiol 21:203–209. doi:10.1007/BF00292500

    Article  Google Scholar 

  22. Fraser D, Gilliam J (1992) Nonlethal impacts of predator invasion: facultative suppression of growth and reproduction. Ecology 73:959–970

    Article  Google Scholar 

  23. Fraser D, Gilliam J, Akkara J (2004) Night feeding by guppies under predator release: effects on growth and daytime courtship. Ecology 85:312–319

    Article  Google Scholar 

  24. Gilliam J, Fraser D, Alkins-Koo M (1993) Structure of a tropical stream fish community: a role for biotic interactions. Ecology 74:1856–1870

    Article  Google Scholar 

  25. Hairston N, Smith F, Slobodkin L (1960) Community structure, population control, and competition. Am Nat 94:421–425

    Article  Google Scholar 

  26. Handelsman C, Broder ED, Dalton CM, et al. (2013) Predator-induced phenotypic plasticity in metabolism and rate of Growth: rapid adaptation to a novel environment. Integr Comp Biol 1–14. doi: 10.1093/icb/ict057

  27. Hawlena D, Schmitz OJ (2010a) Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proc Natl Acad Sci USA 107:15503–15507. doi:10.1073/pnas.1009300107

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  28. Hawlena D, Schmitz OJ (2010b) Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am Nat 176:537–556. doi:10.1086/656495

    PubMed  Article  Google Scholar 

  29. Hawlena D, Strickland MS, Bradford MA, Schmitz OJ (2012) Fear of predation slows plant-litter decomposition. Science 336:1434–1438. doi:10.1126/science.1220097

    PubMed  Article  CAS  Google Scholar 

  30. Hebblewhite M, Merrill EH (2009) Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90:3445–3454

    PubMed  Article  Google Scholar 

  31. Hemminga M (1991) The balance of nutrient losses and gains in seagrass meadows. Mar Ecol Prog 71:85–96

    Article  Google Scholar 

  32. Hendrixson HA, Sterner RW, Kay D (2007) Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J Fish Biol 70:121–140. doi:10.1111/j.1095-8649.2006.01280.x

    Article  Google Scholar 

  33. Hobbs N (1996) Modification of ecosystems by ungulates. J Wildl Manage 60:695–713

    Article  Google Scholar 

  34. Holmes RA, Aminot A, Kerouel R, et al. (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56:1801—1808

  35. Huggins AK, Munday KA (1966) Crustacean metabolism. Comp Biochem Physiol 18:283–290

    PubMed  Article  CAS  Google Scholar 

  36. Jobling M (1980) Effects of starvation on proximate chemical composition and energy utilization of plaice, Pleuronectes platessa L. J Fish Biol 17:325–334

    Article  CAS  Google Scholar 

  37. Kajimura M (2004) Dogmas and controversies in the handling of nitrogenous wastes: the effect of feeding and fasting on the excretion of ammonia, urea and other nitrogenous waste products in rainbow trout. J Exp Biol 207:1993–2002. doi:10.1242/jeb.00901

    PubMed  Article  CAS  Google Scholar 

  38. Knoll LB, McIntyre PB, Vanni MJ, Flecker AS (2009) Feedbacks of consumer nutrient recycling on producer biomass and stoichiometry: separating direct and indirect effects. Oikos 118:1732–1742. doi:10.1111/j.1600-0706.2009.17367.x

    Article  CAS  Google Scholar 

  39. Kousoulaki K, Fjelldal PG, Aksnes A, Albrektsen S (2010) Growth and tissue mineralisation of Atlantic cod (Gadus Morhua) fed soluble P and Ca salts in the diet. Aquaculture 309:181–192. doi:10.1016/j.aquaculture.2010.09.017

    Article  CAS  Google Scholar 

  40. Kusch RC, Chivers DP (2004) The effects of crayfish predation on phenotypic and life-history variation in fathead minnows. Can J Zool 921:917–921. doi:10.1139/Z04-066

    Article  Google Scholar 

  41. Lardner B (2000) Morphological and life history responses to predators in larvae of seven anurans. Oikos 1:169–180

    Article  Google Scholar 

  42. Layman C, Allgeier JE, Yeager L, Stoner EW (2013) Thresholds of ecosystem response to nutrient enrichment from fish aggregations. Ecology 94:530–536

    PubMed  Article  Google Scholar 

  43. Leroux SJ, Hawlena D, Schmitz OJ (2012) Predation risk, stoichiometric plasticity and ecosystem elemental cycling. Proc Biol Sci USA 279:4183–4191. doi:10.1098/rspb.2012.1315

    Article  Google Scholar 

  44. Liew HJ, Chiarella D, Pelle A, et al. (2013) Cortisol emphasizes the metabolic strategies employed by common carp, Cyprinus carpio at different feeding and swimming regimes. Comp Biochem Physiol A Mol Integr Physiol 166:449–464. doi:10.1016/j.cbpa.2013.07.029

    PubMed  Article  CAS  Google Scholar 

  45. Lovell T (1998) Nutrition and feeding of fish. Springer, New York, pp 87–93

    Book  Google Scholar 

  46. Luo Y, Xie X (2009) The effect of temperature on post-feeding ammonia excretion and oxygen consumption in the southern catfish. J Comp Physiol B 179:681–689. doi:10.1007/s00360-009-0351-7

    PubMed  Article  CAS  Google Scholar 

  47. Lyndon AR, Houlihan DF, Hall SJ (1992) The effect of short-term fasting and a single meal on protein synthesis and oxygen consumption in cod, Gadus morhua. J Comp Physiol B 162:209–215

    PubMed  Article  CAS  Google Scholar 

  48. Mayzaud P, Conover R (1988) 0: N atomic ratio as a tool to describe zooplankton metabolism. Mar Ecol Prog Ser 45:289–302

    Article  CAS  Google Scholar 

  49. McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol 156:1–18. doi:10.1016/j.cbpa.2010.01.002

    PubMed  Article  Google Scholar 

  50. McIntyre PB, Flecker AS (2010) Ecological stoichiometry as an integrative framework in stream fish ecology. Am Fish Soc Symp 73:539–558

    Google Scholar 

  51. McIntyre PB, Jones LE, Flecker AS, Vanni MJ (2007) Fish extinctions alter nutrient recycling in tropical freshwaters. Proc Natl Acad Sci USA 104:4461–4466. doi:10.1073/pnas.0608148104

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  52. McIntyre PB, Flecker AS, Vanni MJ, et al. (2008) Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89:2335–2346

    PubMed  Article  Google Scholar 

  53. McManamay RA, Webster JR, Valett HM, Dolloff CA (2011) Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. J North Am Benthol Soc 30:84–102. doi:10.1899/09-152.1

    Article  Google Scholar 

  54. Mehner T, Wieser W (1994) Energetics and metabolic correlates of starvation in juvenile perch (Perca fluviatilis). J Fish Biol 45:325–333

    Article  Google Scholar 

  55. Murray BD, Webster CR, Bump JK (2013) Broadening the ecological context of ungulate-ecosystem interactions: the importance of space, seasonality, and nitrogen. Ecology 94:1317–1326

    PubMed  Article  Google Scholar 

  56. Navarro I, Gutierrez J (1995) Fasting and starvation. In: Mommsen T, Hochachka P (eds) Biochemistry and molecular biology of fishes, vol 4. Elsevier, New York, pp 393–434

    Google Scholar 

  57. Nichols E, Spector S, Louzada J, et al. (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474. doi:10.1016/j.biocon.2008.04.011

    Article  Google Scholar 

  58. Palkovacs EP, Marshall MC, Lamphere B, et al. (2009) Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams. Philos Trans R Soc Lond B Biol Sci 364:1617–1628. doi:10.1098/rstb.2009.0016

    PubMed  Article  PubMed Central  Google Scholar 

  59. Peckarsky B (1980) Predator-prey interactions between stoneflies and mayflies: behavioral observations. Ecology 61:932–943

    Article  Google Scholar 

  60. Pena EA, Slate EH (2006) Global validation of linear model assumptions. J Am Stat Assoc 101:341–354

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  61. R-Team DC (2010) R: a language and environment for statistical computing

  62. Raubenheimer D, Simpson SJ, Mayntz D (2009) Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct Ecol 23:4–16. doi:10.1111/j.1365-2435.2008.01522.x

    Article  Google Scholar 

  63. Rehnberg BG, Smith RJF (1988) The influence of alarm substance and shoal size on the behaviour of zebra danios, Brachydanio rerio (Cyprinidae). J Fish Biol 33:155–163. doi:10.1111/j.1095-8649.1988.tb05457.x

    Article  Google Scholar 

  64. Reznick D, Bryga H (1987) Life-history evolution in guppies (Poecilia reticulata). 1. Phenotypic and genetic changes in an introduction experiment. Evolution 41:1370–1385

    Article  Google Scholar 

  65. Reznick DN, Shaw FH, Rodd H, Shaw RG (1997) Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275:1934–1937. doi:10.1126/science.275.5308.1934

    PubMed  Article  CAS  Google Scholar 

  66. Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163. doi:10.1111/j.1461-0248.2003.00560.x

    Article  Google Scholar 

  67. Shim K, Ho C (1989) Calcium and phosphorus requirements of guppy Poecilia reticulata. Bull Jpn Soc Sci 55:1947–1953

    Article  CAS  Google Scholar 

  68. Sih A, Moore R (1993) Delayed hatching of salamander eggs in response to enhanced larval predation risk. Am Nat 142:947–960

    PubMed  Article  CAS  Google Scholar 

  69. Sinha AK, Liew HJ, Diricx M, et al. (2012) The interactive effects of ammonia exposure, nutritional status and exercise on metabolic and physiological responses in gold fish (Carassius auratus L.). Aquat Toxicol 109:33–46. doi:10.1016/j.aquatox.2011.11.002

    PubMed  Article  CAS  Google Scholar 

  70. Song Z, Boenke MC, Rodd FH (2011) Interpopulation differences in shoaling behaviour in guppies (Poecilia reticulata): roles of social environment and population origin. Ethology 117:1009–1018. doi:10.1111/j.1439-0310.2011.01952.x

    Article  Google Scholar 

  71. Stemberger R, Gilbert J (1987) Multiple-species induction of morphological defenses in the rotifer Keratella testudo. Ecology 68:370–378

    Article  Google Scholar 

  72. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  73. Stoks R, De Block M, McPeek M (2005) Alternative growth and energy storage responses to mortality threats in damselflies. Ecol Lett 8:1307–1316. doi:10.1111/j.1461-0248.2005.00840.x

    Article  Google Scholar 

  74. Taylor BW, Keep CF, Hall RO, et al. (2007) Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. J North Am Benthol Soc 26:167—177. doi:10.1899/0887-3593(2007)26[167:ITFAMM]2.0.CO;2

  75. Tollrian R (1995) Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76:1691–1705

    Article  Google Scholar 

  76. Torres LE, Vanni MJ (2007) Stoichiometry of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos 116:259–270. doi:10.1111/j.2006.0030-1299.15268.x

    Article  CAS  Google Scholar 

  77. Torres-Dowdall J, Handelsman CA, Reznick DN, Ghalambor CK (2012) Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata). Evolution 66:3432–3443. doi:10.5061/dryad.84gf5

    PubMed  Article  Google Scholar 

  78. Vanni MJ (2002) Nutrient cycling By animals in freshwater ecosystems. Annu Rev Ecol Syst 33:341–370. doi:10.1146/annurev.ecolsys.33.010802.150519

    Article  Google Scholar 

  79. Vanni M, Layne C (1997) Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on algae in lakes. Ecology 78:21–40

    Google Scholar 

  80. Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Annu Rev Physiol 68:223–251. doi:10.1146/annurev.physiol.68.040104.105739

    PubMed  Article  Google Scholar 

  81. Warkentin K (1995) Adaptive plasticity in hatching age: a response to predation risk trade-offs. Proc Natl Acad USA 92:3507–3510

    Article  CAS  Google Scholar 

  82. Weetman D, Atkinson D, Chubb J (1999) Water temperature influences the shoaling decisions of guppies, Poecilia reticulata, under predation threat. Anim Behav 58:735–741. doi:10.1006/anbe.1999.1191

    PubMed  Article  Google Scholar 

  83. Yang T, Somero GN (1993) Effects of feeding and food deprivation on oxygen consumption, muscle protein concentration and activities of energy metabolism enzymes in muscle and brain of shallow-living (Scorpaena guttata) and deep-living (Sebastolobus alascanus) scorpaenid fishes. J Exp Biol 181:213–232

    CAS  Google Scholar 

  84. Zandonà E, Auer SK, Kilham SS, et al. (2011) Diet quality and prey selectivity correlate with life histories and predation regime in Trinidadian guppies. Funct Ecol 25:964–973. doi:10.1111/j.1365-2435.2011.01865.x

    Article  Google Scholar 

  85. Zanotto F, Gouveia S, Simpson S, Calder D (1997) Nutritional homeostasis in locusts: is there a mechanism for increased energy expenditure during carbohydrate overfeeding? J Exp Biol 200:2437–2448

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jennifer Thaler and Michael Sheriff for organizing this special edition and for related helpful discussions to improve this manuscript. We thank Amy McCune, Nelson Hairston, Os Schmitz and one anonymous reviewer for comments that improved this manuscript and Corey Handelsman, Dale Broder and Cameron Ghalambor for discussions that helped shape this study. We are grateful for the help of Eugenia Zandona and Karen Sullam in collecting the fish used in this study, and we thank Connor Benfield, William Arragundi and Alicia Zhao for assistance with animal husbandry and Ezra Lencer, Amanda Cass and Amy McCune for use of laboratory resources. We thank the American Society of Naturalists, The Cornell Department of Ecology & Evolutionary Biology, the Andrew W. Mellon Foundation and a National Science Foundation DDIG for funding in support of this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Dalton.

Additional information

Communicated by Michael Sheriff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4275 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dalton, C.M., Flecker, A.S. Metabolic stoichiometry and the ecology of fear in Trinidadian guppies: consequences for life histories and stream ecosystems. Oecologia 176, 691–701 (2014). https://doi.org/10.1007/s00442-014-3084-6

Download citation

Keywords

  • General stress paradigm
  • Non-consumptive predator effect
  • Behaviorally mediated trophic cascade
  • Nutrient excretion