Skip to main content

High-altitude multi-taskers: bumble bee food plant use broadens along an altitudinal productivity gradient

Abstract

We use an extensive historical data set on bumble bee host choice collected almost 50 years ago by L. W. Macior (Melanderia 15:1–59, 1974) to examine how resource partitioning by bumble bees varies over a 2,700-m altitudinal gradient at four hierarchical scales: individual, colony, species and community. Bumble bee behavior, resource overlap between castes, and plant-bumble bee networks change with altitude in accordance with tightening temporal constraints on flowering and colony growth in alpine habitats. Individual bees were more likely to collect pollen from multiple sources at high altitude. Between-caste foraging niche overlap increased with altitude. Similarly, alpine forager networks were more highly nested than either subalpine or montane networks due to increased asymmetric specialization. However, interspecific resource partitioning showed a more complex spatial pattern with low niche overlap at intermediate altitude (subalpine) compared to montane (disturbed) and alpine (unproductive) sites. Results suggest that spatial variation in interspecific resource partitioning is driven by a shift in the behavior of long-tongued bumble bees. Long-tongued bumble bees specialized in the subalpine but generalized in montane and alpine zones. Our reanalysis of Macior’s data shows that bumble bee behavior varies substantially with altitude influencing plant-bumble bee interaction networks. Results imply that pollination services to alpine host plants will change dramatically as subalpine species with unique foraging strategies move upward under global warming.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ahrné K, Bengtsson J, Elmqvist T (2009) Bumble bees (Bombus spp.) along a gradient of increasing urbanization. PLoS ONE 4:e5574

    Article  PubMed Central  PubMed  Google Scholar 

  • Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant-pollinator interaction network. Oikos 117:1796–1807

    Article  Google Scholar 

  • Aldridge G, Inouye DW, Forrest JRK, Barr WA, Miller-Rushing AJ (2011) Emergence of a mid-season period of low floral resources in a montane meadow ecosystem associated with climate change. J Ecol 99:905–913

    Article  Google Scholar 

  • Arceo-Gómez G, Ashman TL (2011) Heterospecific pollen deposition: does diversity alter the consequences? New Phytol 192:738–746

    Article  PubMed  Google Scholar 

  • Ashman TL, Arceo-Gómez G (2013) Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am J Bot 100:1061–1070

    Article  PubMed  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  • Bascompte J (2009) Mutualistic networks. Front Ecol Environ 7:429–436

    Article  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci 100:9383–9387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker BM (2011) lme4: linear mixed-effects models using S4 classes

  • Bell JM, Karron JD, Mitchell RJ (2005) Interspecific competition for pollination lowers seed production and outcrossing in Mimulus ringens. Ecology 86:762–771

    Article  Google Scholar 

  • Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BioMed Centr Ecol 6:9

    Google Scholar 

  • Brock MT (2009) Prezygotic barriers to gene flow between Taraxacum ceratophorum and the invasive Taraxacum officinale (Asteraceae). Oecologia 161:241–251

    Article  PubMed  Google Scholar 

  • Burgos E, Ceva H, Perazzo RPJ, Devoto M, Medan D, Zimmermann M, María Delbue A (2007) Why nestedness in mutualistic networks? J Theor Biol 249:307–313

    Article  PubMed  Google Scholar 

  • Burkle LA, Alarcón R (2011) The future of plant-pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538

    Article  PubMed  Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence and function. Science 339:1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Byron PA (1980) On the ecology and systematics of Coloradan bumble bees. Ph.D. thesis, University of California

  • CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. Proc Natl Acad Sci A:1–6

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 2:129–136

    Article  Google Scholar 

  • Collinge SK, Prudic KL, Oliver JC (2003) Effects of local habitat characteristics and landscape context on grassland butterfly diversity. Conserv Biol 17:178–187

    Article  Google Scholar 

  • Dalsgaard B, Magård E, Fjeldså J, Martín González AM, Rahbek C, Olesen JM, Ollerton J, Alarcón R, Cardoso Araujo A, Cotton PA, Lara C, Machado CG, Sazima I, Sazima M, Timmermann A, Watts S, Sandel B, Sutherland WJ, Svenning JC (2011) Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity. PLoS ONE 6:e25891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dormann CF (2011) How to be a specialist? Quantifying specialisation in pollination networks. Network 1:1–20

    Google Scholar 

  • Dormann CF, Gruber B (2011) Bipartite: visualising bipartite networks and calculating some (ecological) indices

  • Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269

    Article  Google Scholar 

  • Elliott SE (2009) Surplus nectar available for subalpine bumble bee colony growth. Environ Entomol 38:1680–1689

    Article  PubMed  Google Scholar 

  • Fang Q, Huang SQ (2012) Relative stability of core groups in pollination networks in a biodiversity hotspot over four years. PLoS ONE 7:e32663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang Q, Huang SQ (2013) A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94:1176–1185

    Article  PubMed  Google Scholar 

  • Flanagan RJ, Mitchell RJ, Knutowski D, Karron JD (2009) Interspecific pollinator movements reduce pollen deposition and seed production in Mimulus ringens (Phrymaceae). Am J Bot 96:809–815

    Article  PubMed  Google Scholar 

  • Flanagan RJ, Mitchell RJ, Karron JD (2011) Effects of multiple competitors for pollination on bumblebee foraging patterns and Mimulus ringens reproductive success. Oikos 120:200–207

    Article  Google Scholar 

  • Forrest J, Inouye DW, Thomson JD (2010) Flowering phenology in subalpine meadows: does climate variation influence community co-flowering patterns? Ecology 91:431–440

    Article  PubMed  Google Scholar 

  • Fox J, Weisberg S, Hong J, Anderson R, Firth D, Friendly M, Taylor S (2013) Effects: effect displays for linear, generalized linear, multinomial-logit, proportional-odds logit models and mixed-effects models

  • Galeano J, Pastor JM, Iriondo JM (2009) Weighted-Interaction Nestedness Estimator (WINE): a new estimator to calculate over frequency matrices. Environ Model Softw 24:1342–1346

    Article  Google Scholar 

  • Galen C (1999) Why do flowers vary? Bioscience 49:631–640

    Article  Google Scholar 

  • Galen C (2005) It never rains but then it pours: the diverse effects of water on flowering integrity and function. In: Reekie EG, Bazzaz FA (eds) Reproductive allocation in plants. Elsevier, San Diego, pp 77–92

    Chapter  Google Scholar 

  • Galen C, Gregory T (1989) Interspecific pollen transfer as a mechanism of competition: consequences of foreign pollen contamination for seed set in the alpine wildflower, Polemonium viscosum. Ecology 81:120–123

    Google Scholar 

  • Geib JC, Galen C (2012) Tracing impacts of partner abundance in facultative pollination mutualisms: from individuals to populations. Ecology 93:1581–1592

    Article  PubMed  Google Scholar 

  • Gomez JM, Perfectti F, Jordano P (2011) The functional consequences of mutualistic network architecture. PLoS ONE 6:e16143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goulson D (2003) Bumble bees; their behavior and ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hagbery J, Nieh JC (2012) Individual lifetime pollen and nectar foraging preferences in bumble bees. Naturwissenschaften 99:821–832

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfal P (2012) multcomp: simultaneous inference in general parametric models

  • Inouye D (1977) Species structure of bumblebee communities in North America and Europe. In: Mattson W (ed) The role of arthropods in forest ecosystems. Springer, Berlin, pp 35–40

    Chapter  Google Scholar 

  • Inouye DW (1978) Resource partitioning in bumblebees: experimental studies of foraging behavior. Ecology 59:672–678

    Article  Google Scholar 

  • Inouye DW (1980) The effect of proboscis and corolla tube lengths on patterns and rates of flower visitation by bumblebees. Oecologia 45:197–201

    Article  Google Scholar 

  • Jakobsson A, Lázaro A, Totland O (2009) Relationships between the floral neighborhood and individual pollen limitation in two self-incompatible herbs. Oecologia 160:707–719

    Article  PubMed  Google Scholar 

  • Johnson DR, Ebert-May D, Webber PJ, Tweedie CE (2011) Forecasting alpine vegetation change using repeat sampling and a novel modeling approach. Ambio 40:693–704

    Article  PubMed Central  PubMed  Google Scholar 

  • Kameyama Y, Kasagi T, Kudo G (2008) A hybrid zone dominated by fertile F1s of two alpine shrub species, Phyllodoce caerulea and Phyllodoce aleutica, along a snowmelt gradient. J Evol Biol 21:588–597

    Article  CAS  PubMed  Google Scholar 

  • Kaspari M (2001) Taxonomic level, trophic biology and the regulation of local abundance. Glob Ecol Biogeogr 10:229–244

    Article  Google Scholar 

  • Kaspari M, Donnell SO, Kercher JR, Kaspari M, Donnell SO, Kercher JR (2000) Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. Am Nat 155:280–293

    Article  Google Scholar 

  • Kearns CA, Oliveras DM (2009) Boulder County bees revisited: a resampling of Boulder Colorado bees a century later. J Insect Conserv 13:603–613

    Article  Google Scholar 

  • Kendall WD (2002) A brief economic history of Colorado. Prepared for the demography section, Colorado Department of Local Affairs. Center for Business and Economic Forcasting. Available at: http://cospl.coalliance.org/fedora/repository/co:3222/loc61502ec72002internet.pdf. (Last accessed 11-26-13)

  • Knee WJ, Medler JT (1965) Seasonal size increase of bumblebee workers (Hymenoptera-Bombus). Can Entomol 97:1149–1155

    Article  Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Kudo G, Suzuki S (1999) Flowering phenology of alpine plant communities along a gradient of snowmelt timing. Polar Biosci 12:100–113

    Google Scholar 

  • Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton

  • Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J (2007) The impact of an alien plant on a native plant-pollinator network: an experimental approach. Ecol Lett 10:539–550

    Article  PubMed  Google Scholar 

  • Macior LW (1974) Pollination ecology of the front range of the Colorado Rocky Mountains. Melanderia 15:1–59

    Google Scholar 

  • Mello MAR, Santos GMDM, Mechi MR, Hermes MG (2011) High generalization in flower-visiting networks of social wasps. Acta Oecol 37:37–42

    Article  Google Scholar 

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond Biol Sci 271:2605–2611

    Article  Google Scholar 

  • Miller-Rushing AJ, Inouye DW (2009) Variation in the impact of climate change on flowering phenology and abundance: an examination of two pairs of closely related wildflower species. Am J Bot 96:1821–1829

    Article  PubMed  Google Scholar 

  • Moeller DA (2004) Facultative interactions among plants via shared pollinators. Ecology 85:3289–3301

    Article  Google Scholar 

  • Morales CL, Traveset A (2008) Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit Rev Plant Sci 27:221–238

    Article  CAS  Google Scholar 

  • Namgail T, Rawat GS, Mishra C, Van Wieren SE, Prins HHT (2012) Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas. J Plant Res 125:93–101

    Article  PubMed Central  PubMed  Google Scholar 

  • Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N (2012) Eco-evolutionary responses of biodiversity to climate change. Nat Clim Change 2:747–751

    Article  Google Scholar 

  • Obeso JR (1992) Geographic distribution and community structure of bumble bees in the northern Iberian peninsula. Oecologia 89:244–252

    Google Scholar 

  • Olesen JM, Jordano P (2002) Geographic patterns in plant-polliantor mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Olesen JM, Eskildsen LI, Venkatasamy S (2002) Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Divers Distrib 8:181–192

    Article  Google Scholar 

  • Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecology 89:1573–1582

    Article  PubMed  Google Scholar 

  • Ollerton J, Cranmer L (2002) Latitudinal trends in plant-pollinator interactions: are tropical plants more specialised? Oikos 98:340–350

    Article  Google Scholar 

  • Pato J, Ramón Obeso J (2012) Growth and reproductive performance in bilberry (Vaccinium myrtillus) along an elevation gradient. Ecoscience 19:59–68

    Article  Google Scholar 

  • Pederson GT, Betancourt JL, McCabe GJ (2013) Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, USA. Geophys Res Lett 40:1–6

    Article  Google Scholar 

  • Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53–74

    Article  Google Scholar 

  • Pineiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2011) nlme: linear and nonlinear mixed effects models

  • Plowright RC, Jay SC (1968) Caste differentiation in bumblebees (Bombus LTAR.: HYM.). I. The determination of female size. Insect Soc 15:171–192

    Article  Google Scholar 

  • Popic TJ, Wardle GM, Davila YC (2013) Flower-visitor networks only partially predict the function of pollen transport by bees. Austral Ecol 38:76–86

    Article  Google Scholar 

  • Pyke GH (1982) Local geographic distributions of bumblebees near Crested Butte, Colorado: competition and community. Ecology 63:555–573

    Article  Google Scholar 

  • Pyke GH, Inouye DW, Thomson JD (2011) Activity and abundance of bumble bees near Crested Butte, Colorado: diel, seasonal, and elevation effects. Ecol Entomol 36:511–521

    Article  Google Scholar 

  • Pyke GH, Inouye DW, Thomson JD (2012) Local geographic distributions of bumble bees near Crested Butte, Colorado: competition and community structure revisited. Environ Entomol 41:1332–1349

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing

  • Ramos-Jiliberto R, Domínguez D, Espinoza C, Lopez G, Valdovinos FS, Bustamante RO, Medel R (2010) Topological change of Andean plant–pollinator networks along an altitudinal gradient. Ecol Complex 7:86–90

    Article  Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlings S, Root TL, Seguin B, Tryjanowiski P (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contributions of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 79–131

    Google Scholar 

  • Scaven VL, Rafferty NE (2013) Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr Zool 59:418–426

    PubMed Central  PubMed  Google Scholar 

  • Schleuning M, Fründ J, Klein A-M, Abrahamczyk S, Alarcón R, Albrecht M, Andersson GKS, Bazarian S, Böhning-Gaese K, Bommarco R, Dalsgaard B, Dehling DM, Gotlieb A, Hagen M, Hickler T, Holzschuh A, Kaiser-Bunbury CN, Kreft H, Morris RJ, Sandel B, Sutherland WJ, Svenning J-C, Tscharntke T, Watts S, Weiner CN, Werner M, Williams NM, Winqvist C, Dormann CF, Blüthgen N (2012) Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr Biol 22:1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Shpigler H, Tamarkin M, Gruber Y, Poleg M, Siegel AJ, Bloch G (2013) Social influences on body size and developmental time in the bumblebee Bombus terrestris. Behav Ecol Sociobiol 67:1601–1612

    Article  Google Scholar 

  • Smith JG, Sconiers W, Spasojevic MJ, Ashton IW, Suding KN (2012) Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arct Antarct Alp Res 44:135–142

    Article  Google Scholar 

  • Spaethe J, Weidenmüller A (2002) Size variation and foraging rate in bumblebees (Bombus terrestris). Insect Soc 49:142–146

    Article  Google Scholar 

  • Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246

    Article  Google Scholar 

  • Thomson J (2003) When is it mutualism? Am Nat 162:S1–S9

    Article  PubMed  Google Scholar 

  • Trøjelsgaard K, Olesen JM (2013) Macroecology of pollination networks. Glob Ecol Biogeogr 22:149–162

    Article  Google Scholar 

  • Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094

    Article  Google Scholar 

  • Wheeler B (2010) lmPerm: Permutation tests for linear models

  • Wyka T, Galen C (2000) Current and future costs of reproduction in Oxytropis sericea, a perennial plant from the Colorado Rocky Mountains, USA. Antarctic Alpine Res 32:438–448

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge L. Walter Macior for his meticulous contributions to the understanding of Rocky Mountain bumble bees and their food plants. We thank R. Holdo for advice on implementing the network analyses in R Statistical Software. Anonymous reviewers were especially helpful in improving the manuscript. This research was supported with funding from NSF grant 1045322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole E. Miller-Struttmann.

Additional information

Communicated by Christina Marie Caruso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1295 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miller-Struttmann, N.E., Galen, C. High-altitude multi-taskers: bumble bee food plant use broadens along an altitudinal productivity gradient. Oecologia 176, 1033–1045 (2014). https://doi.org/10.1007/s00442-014-3066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3066-8

Keywords

  • Alpine bumble bees
  • Niche partitioning
  • Generalization
  • Productivity
  • Bombus