Skip to main content

Advertisement

Log in

Morphological diversity at different spatial scales in a Neotropical bat assemblage

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The morphology of species can be used to represent their ecological position and infer potential processes determining the structure of species assemblages. This ecomorphological approach has been widely applied to the study of bat assemblages which mainly focuses on a single spatial scale and particular guilds. We extended such an ecomorphological approach to a multi-scale analysis of a Neotropical bat assemblage and its constituent guilds (aerial and gleaning insectivores, frugivores, and nectarivores) to describe their structure at different spatial scales and determine the relative importance of inter-specific competition, habitat filtering, or stochastic processes shaping such structures. We measured the occupied morphological space (size) defined by wing and skull morphology independently and the nearest-neighbour distance (structure) among species within these spaces at each spatial scale. Observed patterns were compared with random expectations derived from null models for statistical inference. When controlling for species richness and regional sampling effects in the null models, we did not find a significant effect of spatial scale in the morphological structure of the studied bat assemblage and guilds. Morphological structure followed the same patterns across scales as those expected from random drawings of sample size alone. Similar results were obtained regardless of morphological complex (wing and skull) and guilds. At both the assemblage and guild levels, bat morphological structure seems to be determined by regional, abiotic processes (e.g. habitat filtering) shaping the composition and organization of the species pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arita HT (1997) Species composition and morphological structure of the bat fauna of Yucatan, Mexico. J Anim Ecol 66:83–97

    Article  Google Scholar 

  • Arita HT, Ortega J (1998) The Middle American bat fauna: conservation in the Neotropical-Nearctic border. In: Kunz TH, Racey PA (eds) Bat biology and conservation. Smithsonian Institution Press, Washington, pp 295–308

    Google Scholar 

  • Arita HT, Rodriguez P (2002) Geographic range, turnover rate and the scaling of species diversity. Ecography 25:541–550. doi:10.1034/j.1600-0587.2002.250504.x

    Article  Google Scholar 

  • Arita HT, Rodriguez P (2004) Local-regional relationships and the geographical distribution of species. Global Ecol Biogeogr 13:15–21. doi:10.1111/j.1466-882X.2004.00067.x

    Article  Google Scholar 

  • Arita HT, Figueroa F, Frisch A, Rodriguez P, Santos del Prado K (1997) Geographical range size and the conservation of Mexican mammals. Conserv Biol 11:92–100

    Article  Google Scholar 

  • Belmaker J, Jetz W (2013) Spatial scaling of functional structure in bird and mammal assemblages. Am Nat 181:464–478. doi:10.1086/669906

    Article  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. doi:10.1111/j.1461-0248.2009.01314.x

    Article  PubMed  Google Scholar 

  • Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471. doi:10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Dayan T, Simberloff D (2005) Ecological and community-wide character displacement: the next generation. Ecol Lett 8:875–894. doi:10.1111/j.1461-0248.2005.00791.x

    Article  Google Scholar 

  • de Bello F et al (2012) Functional species pool framework to test for biotic effects on community assembly. Ecology 93:2263–2273. doi:10.1890/11-1394.1

    Article  PubMed  Google Scholar 

  • Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, MA, pp 342–444

    Google Scholar 

  • Dumont ER (2007) Feeding mechanisms in bats: variation within the constraints of flight. Integr Comp Biol 47:137–146. doi:10.1093/icb/icm007

    Article  PubMed  Google Scholar 

  • Dumont ER, Dávalos LM, Goldberg A, Santana SE, Rex K, Voigt CC (2011) Morphological innovation, diversification and invasion of a new adaptive zone. Proc R Soc B 279:1797–1805. doi:10.1098/rspb.2011.2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada-Villegas S, McGill BJ, Kalko EKV (2012) Climate, habitat, and species interactions at different scales determine the structure of a Neotropical bat community. Ecology 93:1183–1193. doi:10.1890/11-0275.1

    Article  PubMed  Google Scholar 

  • Fauth JE, Bernardo J, Camara M, Resetarits WJ Jr, Van Buskirk J, McCollum SA (1996) Simplifying the jargon of community ecology: a conceptual approach. Am Nat 147:282–286

    Article  Google Scholar 

  • Findley JS (1976) Structure of bat communities. Am Nat 110:129–139

    Article  Google Scholar 

  • Findley JS, Black H (1983) Morphological and dietary structuring of a Zambian insectivorous bat community. Ecology 64:625–630

    Article  Google Scholar 

  • Findley JS, Wilson DE (1982) Ecological significance of chiropteran morphology. In: Kunz TH (ed) Ecology of bats. Plenum, New York, pp 243–260

    Chapter  Google Scholar 

  • Freeman PW (1981) Correspondence of food-habits and morphology in insectivorous bats. J Mammal 62:166–173

    Article  Google Scholar 

  • Freeman PW (2000) Macroevolution in Microchiroptera: recoupling morphology and ecology with phylogeny. Evol Ecol 2:317–335

    Google Scholar 

  • Gardner AL (2007) Mammals of South America, vol. I. Marsupials, xenarthrans, shrews, and bats. University of Chicago Press, Chicago

    Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Harrison S, Cornell H (2008) Toward a better understanding of the regional causes of local community richness. Ecol Lett 11:969–979. doi:10.1111/j.1461-0248.2008.01210.x

    Article  PubMed  Google Scholar 

  • Hawkins BA, Diniz Filho JAF, Jaramillo CA, Soeller SA (2007) Climate, niche conservatism, and the global bird diversity gradient. Am Nat 170:S16–S27. doi:10.1086/519009

    Article  PubMed  Google Scholar 

  • Hillebrand H (2005) Regressions of local on regional diversity do not reflect the importance of local interactions or saturation of local diversity. Oikos 110:195–198. doi:10.1111/j.0030-1299.2005.14008.x

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401

    Article  Google Scholar 

  • Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106. doi:10.1126/science.1130880

    Article  PubMed  CAS  Google Scholar 

  • Kalko EKV (1998) Organisation and diversity of tropical bat communities through space and time. Zoology 101:281–297

    Google Scholar 

  • Karr JR, James FC (1975) Ecomorphological configurations and convergent evolution in species and communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap, Cambridge, MA, pp 258–291

    Google Scholar 

  • Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr 80:401–422. doi:10.1890/09-1672.1

    Article  Google Scholar 

  • Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283. doi:10.1086/519400

    Article  PubMed  Google Scholar 

  • Loreau M (2000) Are communities saturated? On the relationship between α, β and γ diversity. Ecol Lett 3:73–76

    Article  Google Scholar 

  • MacArthur RM, Levins R (1967) Limiting similarity convergence and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093. doi:10.1111/j.1461-0248.2010.01509.x

    Article  PubMed  Google Scholar 

  • McGill BJ (2010) Matters of scale. Science 328:575–576. doi:10.1126/science.1188528

    Article  PubMed  CAS  Google Scholar 

  • Medellin RA, Arita HT, Sánchez O (2008) Identificación de los murciélagos de México, clave de campo, 2nd edn. Instituto de Ecología, UNAM, Mexico City

    Google Scholar 

  • Mittelbach GG et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331. doi:10.1111/j.1461-0248.2007.01020.x

    Article  PubMed  Google Scholar 

  • Moreno CE, Arita HT, Solis L (2006) Morphological assembly mechanisms in neotropical bat assemblages and ensembles within a landscape. Oecologia 149:133–140. doi:10.1007/s00442-006-0417-0

    Article  PubMed  Google Scholar 

  • Mouchet MA, Villeger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876. doi:10.1111/j.1365-2435.2010.01695.x

    Article  Google Scholar 

  • Moulton MP (1985) Morphological similarity and coexistence of congeners-an experimental test with introduced Hawaiian birds. Oikos 44:301–305

    Article  Google Scholar 

  • Norberg UM (1994) Wing design, flight morphology, and habitat use in bats. In: Wainwright P, Reilly SM (eds) Ecological morphology. University of Chicago Press, Chicago, pp 205–239

    Google Scholar 

  • Norberg UML, Norberg RA (2012) Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size. J Exp Biol 215:711–722. doi:10.1242/jeb.059865

    Article  PubMed  Google Scholar 

  • Nowak RM (1999) Walker’s mammals of the world, 6th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Ortega J, Arita HT (1998) Neotropical-Nearctic limits in Middle America as determined by distributions of bats. J Mammal 79:772–783

    Article  Google Scholar 

  • Pausas JG, Verdú M (2010) The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60:614–625. doi:10.1525/bio.2010.60.8.7

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN:3-900051-07-0. http://www.R-project.org

  • Reid FA (2009) A field guide to the mammals of Central America and Southeast Mexico, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171

    Article  PubMed  CAS  Google Scholar 

  • Ricklefs RE (2007) History and diversity: explorations at the intersection of ecology and evolution. Am Nat 170:S56–S70. doi:10.1086/519402

    Article  PubMed  Google Scholar 

  • Ricklefs RE (2012) Species richness and morphological diversity of passerine birds. Proc Natl Acad Sci 109:14482–14487. doi:10.1073/pnas.1212079109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ricklefs RE, Miles DB (1994) Ecological and evolutionary inferences from morphology: an ecological perspective. In: Wainwright P, Reilly SM (eds) Ecological morphology. Chicago University Press, Chicago, pp 13–41

    Google Scholar 

  • Ricklefs RE, Schluter D (eds) (1993) Species diversity in ecological communities. Chicago University Press, Chicago

    Google Scholar 

  • Ricklefs RE, Travis J (1980) A morphological approach to the study of avian community organization. Auk 97:321–338

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 26:340–348. doi:10.1016/j.tree.2011.03.024

    Article  PubMed  Google Scholar 

  • Roy K, Balch DP, Hellberg ME (2001) Spatial patterns of morphological diversity across the Indo-Pacific: analyses using strombid gastropods. Proc R Soc B 268:2503–2508. doi:10.1098/rspb.2000.1428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Srivastava DS (1999) Using local-regional richness plots to test for species saturation: pitfalls and potentials. J Anim Ecol 68:1–16. doi:10.1046/j.1365-2656.1999.00266.x

    Article  Google Scholar 

  • Stevens RD (2006) Historical processes enhance patterns of diversity along latitudinal gradients. Proc R Soc B 273(2283–2289):2006. doi:10.1098/rspb.3596

    Google Scholar 

  • Stevens RD (2011) Relative effects of time for speciation and tropical niche conservatism on the latitudinal diversity gradient of phyllostomid bats. Proc R Soc B 278(2528–2536):2010. doi:10.1098/rspb.2341

    Google Scholar 

  • Stevens RD, Willig MR (1999) Size assortment in New World bat communities. J Mammal 80:644–658

    Article  Google Scholar 

  • Stevens RD, Willig MR (2002) Geographical ecology at the community level: perspectives on the diversity of new world bats. Ecology 83:545–560. doi:10.1890/0012-9658(2002)083[0545:GEATCL]2.0.CO;2

    Article  Google Scholar 

  • Swartz SM, Freeman PW, Stockwell EF (2003) Ecomorphology of bats: comparative and experimental approaches relating structural design to ecology. In: Kunz TH, Fenton MB (eds) Bat ecology. Chicago University Press, Chicago, pp 257–300

    Google Scholar 

  • Terborgh J, Faaborg J (1980) Saturation of bird communities in the West Indies. Am Nat 116:178–195

    Article  Google Scholar 

  • Villalobos F, Rangel TF, Diniz-Filho JAF (2013) Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence. Proc R Soc B 280:20122570. doi:10.1098/rspb.2012.2570

    Article  PubMed  PubMed Central  Google Scholar 

  • Wainwright P, Reilly SM (eds) (1994) Ecological morphology. University of Chicago Press, Chicago

    Google Scholar 

  • Weiher E, Freund D, Bunton T, Stefanski A, Lee T, Bentivenga S (2011) Advances, challenges and a developing synthesis of ecological community assembly theory. Phil Trans R Soc B 366:2403–2413. doi:10.1098/rstb.2011.0056

    Article  PubMed  PubMed Central  Google Scholar 

  • Willig MR (1986) Bat community structure in South America: a tenacious chimera. Rev Chil Hist Nat 59:151–168

    Google Scholar 

  • Willig MR, Moulton MP (1989) The role of stochastic and deterministic processes in structuring Neotropical bat communities. J Mammal 70:323–329

    Article  Google Scholar 

  • Willig MR, Patterson BD, Stevens RD (2003) Patterns of range size, richness, and body size in the Chiroptera. In: Kunz TH, Fenton MB (eds) Bat ecology. Chicago University Press, Chicago, pp 580–621

    Google Scholar 

  • Zobel M (1997) The relative role of species pools in determining plant species richness. An alternative explanation of species coexistence? Trends Ecol Evol 12:266–269. doi:10.1016/S0169-5347(97)01096-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Christian Voigt and two anonymous referees for their suggestions that helped to improve our manuscript. We are grateful to C. E. Moreno, G. Rodríguez-Tapia, P. Trejo-Barocio, D. Ortiz-Ramirez, and P. Rodríguez for discussions. We also thank F. Cervantes for allowing us access to the Colección Nacional de Mastozoologia of the Universidad Nacional Autónoma de México, and M. V. Cianciaruso for comments on a previous version of this manuscript. F. V. was supported by a CNPq postdoctoral grant while writing the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Villalobos.

Additional information

Communicated by Christian Voigt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalobos, F., Arita, H.T. Morphological diversity at different spatial scales in a Neotropical bat assemblage. Oecologia 176, 557–568 (2014). https://doi.org/10.1007/s00442-014-3039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3039-y

Keywords

Navigation