Chemical defense lowers plant competitiveness

Abstract

Both plant competition and plant defense affect biodiversity and food web dynamics and are central themes in ecology research. The evolutionary pressures determining plant allocation toward defense or competition are not well understood. According to the growth–differentiation balance hypothesis (GDB), the relative importance of herbivory and competition have led to the evolution of plant allocation patterns, with herbivore pressure leading to increased differentiated tissues (defensive traits), and competition pressure leading to resource investment towards cellular division and elongation (growth-related traits). Here, we tested the GDB hypothesis by assessing the competitive response of lima bean (Phaseolus lunatus) plants with quantitatively different levels of cyanogenesis—a constitutive direct, nitrogen-based defense against herbivores. We used high (HC) and low cyanogenic (LC) genotypes in different competition treatments (intra-genotypic, inter-genotypic, interspecific), and in the presence or absence of insect herbivores (Mexican bean beetle, Epilachna varivestis) to quantify vegetative and generative plant parameters (above and belowground biomass as well as seed production). Highly defended HC-plants had significantly lower aboveground biomass and seed production than LC-plants when grown in the absence of herbivores implying significant intrinsic costs of plant cyanogenesis. However, the reduced performance of HC- compared to LC-plants was mitigated in the presence of herbivores. The two plant genotypes exhibited fundamentally different responses to various stresses (competition, herbivory). Our study supports the GDB hypothesis by demonstrating that competition and herbivory affect different plant genotypes differentially and contributes to understanding the causes of variation in defense within a single plant species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adler LS, Seifert MG, Wink M, Morse GE (2012) Reliance on pollinators predicts defensive chemistry across tobacco species. Ecol Lett 15:1140–1148. doi:10.1111/j.1461-0248.2012.01838.x

    PubMed  Article  Google Scholar 

  2. Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109. doi:10.1016/j.tree.2006.10.012

    PubMed  Article  Google Scholar 

  3. Agrawal AA (2011) Current trends in the evolutionary ecology of plant defence. Funct Ecol 25:420–432. doi:10.1111/j.1365-2435.2010.01796.x

    Article  Google Scholar 

  4. Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149

    PubMed  Article  Google Scholar 

  5. Agrawal AA, Conner JK, Rasmann S (2010) Tradeoffs and negative correlations in evolutionary ecology. In: Bell MA, Eanes WF, Futuyma DJ, Levinton JS (eds) Evolution after Darwin: the first 150 years. Sinauer, Sunderland

    Google Scholar 

  6. Atsatt PR, O’Dowd DJ (1976) Plant defense guilds. Science (80-) 193:24–29

    Article  CAS  Google Scholar 

  7. Baldwin IT, Hamilton W (2000) Jasmonate-induced responses of Nicotiana sylvestris results in fitness costs due to impaired competitve ability for nitrogen. J Chem Ecol 26:915–952

    Article  CAS  Google Scholar 

  8. Baldwin IT, Sims CL, Kean SE (1990) The reproductive consequences associated with inducible alkaloidal responses in wild tobacco. Ecology 71:252–262

    Article  CAS  Google Scholar 

  9. Ballhorn DJ (2011a) Cyanogenic glycosides in nuts and seeds. In: Preedy VR, Watson RR, Patel VB (eds) Nuts and seeds health and disease prevention (1st edn). Elsevier, Amsterdam, pp 129–136

    Google Scholar 

  10. Ballhorn DJ (2011b) Constraints of simultaneous resistance to a fungal pathogen and an insect herbivore in lima bean (Phaseolus lunatus L.). J Chem Ecol 37:141–144. doi:10.1007/s10886-010-9905-0

    PubMed  Article  CAS  Google Scholar 

  11. Ballhorn DJ, Lieberei R, Ganzhorn JU (2005) Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore–plant interaction: the importance of quantitative data. J Chem Ecol 31:1445–1473. doi:10.1007/s10886-005-5791-2

    PubMed  Article  CAS  Google Scholar 

  12. Ballhorn DJ, Heil M, Pietrowski A, Lieberei R (2007) Quantitative effects of cyanogenesis on an adapted herbivore. J Chem Ecol 33:2195–2208. doi:10.1007/s10886-007-9380-4

    PubMed  Article  CAS  Google Scholar 

  13. Ballhorn DJ, Kautz S, Lion U, Heil M (2008a) Quantitative variability of lima bean’s VOC boquets and its putative ecological consequences. Plant Signal Behav 3:1005–1007. doi:10.1111/j.1365-2745.2008.01404.x. www.landesbioscience.com

    PubMed  PubMed Central  Google Scholar 

  14. Ballhorn DJ, Kautz S, Lion U, Heil M (2008b) Trade-offs between direct and indirect defences of lima bean (Phaseolus lunatus). J Ecol 96:971–980. doi:10.1111/j.1365-2745.2008.01404.x

    Article  CAS  Google Scholar 

  15. Ballhorn DJ, Kautz S, Heil M, Hegeman AD (2009) Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient and direct defense in nature. PLoS ONE e5450

  16. Ballhorn DJ, Pietrowski A, Lieberei R (2010) Direct trade-off between cyanogenesis and resistance to a fungal pathogen in lima bean (Phaseolus lunatus L.). J Ecol 98:226–236. doi:10.1111/j.1365-2745.2009.01591.x

    Article  CAS  Google Scholar 

  17. Ballhorn DJ, Kautz S, Jensen M, Schmitt I, Heil M, Hegeman AD (2011a) Genetic and environmental interactions determine plant defences against herbivores. J Ecol 99:313–326. doi:10.1111/j.1365-2745.2010.01747.x

    Article  Google Scholar 

  18. Ballhorn DJ, Schmitt I, Fankhauser JD, Katagiri F, Pfanz H (2011b) CO2-mediated changes of plant traits and their effects on herbivores are determined by leaf age. Ecol Entomol 36:1–13. doi:10.1111/j.1365-2311.2010.01240.x

    Article  Google Scholar 

  19. Ballhorn DJ, Godschalx AL, Kautz S (2013a) Co-variation of chemical and mechanical defenses in lima bean (Phaseolus lunatus L.). J Chem Ecol 39:413–417. doi:10.1007/s10886-013-0255-6

    PubMed  Article  CAS  Google Scholar 

  20. Ballhorn DJ, Kautz S, Heil M (2013b) Distance and sex determine host plant choice by herbivorous beetles. PLoS ONE 8(2):e55602

  21. Ballhorn DJ, Kautz S, Schädler M (2013c) Induced plant defense via volatile production is dependent on rhizobial symbiosis. Oecologia 172:833–846

  22. Ballhorn DJ, Kay J, Kautz S (2014) Quantitative effects of leaf area removal on indirect defense of lima bean (Phaseolus lunatus) in nature. J Chem Ecol (in press)

  23. Barton KE (2007) Early ontogenetic patterns in chemical defense in Plantago (Plantaginaceae): genetic variation and trade-offs. Am J Bot 94:56–66. doi:10.3732/ajb.94.1.56

    PubMed  Article  CAS  Google Scholar 

  24. Bennett AE, Bever JD, Deane Bowers M (2009) Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia 160:771–779. doi:10.1007/s00442-009-1338-5

    PubMed  Article  Google Scholar 

  25. Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892

    Article  Google Scholar 

  26. Bixenmann RJ, Coley PD, Kursar TA (2013) Developmental changes in direct and indirect defenses in the young leaves of the neotropical tree genus Inga (Fabaceae). Biotropica 45:175–184

    Article  Google Scholar 

  27. Broz AK, Broeckling CD, De-la-Peña C et al (2010) Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol 10:1–14

    Article  Google Scholar 

  28. Campbell SA, Kessler A (2013) Plant mating system transitions drive the macroevolution of defense strategies. Proc Natl Acad Sci USA 110:3973–3978. doi:10.1073/pnas.1213867110

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  29. Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570

    Article  Google Scholar 

  30. Caswell H (1989) Matrix population models, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  31. Chase JM, Abrams PA, Grover JP et al (2002) The interaction between predation and competition: a review and synthesis. Ecol Lett 5:302–315. doi:10.1046/j.1461-0248.2002.00315.x

    Article  Google Scholar 

  32. Cipollini D, Heil M (2010) Costs and benefits of induced resistance to herbivores and pathogens in plants. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 5:1–25. doi:10.1079/PAVSNNR20105005

    Google Scholar 

  33. Connell JH (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am Soc Nat 122:661–696

    Article  Google Scholar 

  34. Cork SJ (1996) Optimal digestive strategies for arboreal herbivorous mammals in contrasting forest types: why koalas and colobines are different. Aust J Ecol 21:10–20

  35. Dantas VDL, Batalha MA (2012) Can antiherbivory resistance explain the abundance of woody species in a Neotropical savanna? Botany 90:93–99. doi:10.1139/B11-087

    Article  Google Scholar 

  36. Dover BA, Noblet R, Moore RF, Culbertson D (1988) An improved artificial diet for Mexican bean beetles based on host preference. J Agric Entomol 5:79–86

    Google Scholar 

  37. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution (NY) 18:586–608

    Article  Google Scholar 

  38. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. Flanders RV (1984) Comparisons of bean varieties currently being used to culture the Mexican bean beetle (Coleoptera: Coccinellidae). Environ Entomol 13:995–999

    Google Scholar 

  40. Frehner M, Conn EE (1987) The linamarin beta-glucosidase in Costa Rican wild lima beans (Phaseolus lunatus L.) is apoplastic. Plant Physiol 84:1296–1300

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  41. García MB, Ehrlén J (2002) Reproductive effort and herbivory timing in a perennial herb: fitness components at the individual and population levels. Am J Bot 89:1295–1302. doi:10.3732/ajb.89.8.1295

    PubMed  Article  Google Scholar 

  42. Haag JJ, Coupe MD, Cahill JFJ (2004) Antagonistic interactions between competition and insect herbivory on plant growth. J Ecol 92:156–167

    Article  Google Scholar 

  43. Hayden KJ, Parker IM (2002) Plasticity in cyanogenesis of Trifolium repens L.: inducibility, fitness costs and variable expression. Evol Ecol Res 4:155–168

    Google Scholar 

  44. Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  45. Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    PubMed  Article  CAS  Google Scholar 

  46. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  47. Johnson MTJ (2008) Bottom-up effects of plant genotype on aphids, ants, and predators. Ecology 89:145–154

    PubMed  Article  Google Scholar 

  48. Jones PR, Møller BL, Høj PB (1999) The UDP-glucose: p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. J Biol Chem 274:35483–35491

    PubMed  Article  CAS  Google Scholar 

  49. Kakes P (1990) Properties and functions of the cyanogenic system in higher plants. Euphytica 48:25–43

    CAS  Google Scholar 

  50. Kaplan I, Dively GP, Denno RF (2009) The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes. Ecol Appl 19:864–872

    PubMed  Article  Google Scholar 

  51. Kempel A, Schädler M, Chrobock T et al (2011) Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc Natl Acad Sci USA 108:5685–5689. doi:10.1073/pnas.1016508108

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  52. Kost C, Heil M (2008) The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature. J Chem Ecol 34:1–13. doi:10.1007/s10886-007-9404-0

    PubMed  Article  Google Scholar 

  53. LaPidus JB, Cleary RW, Davidson RH et al (1963) Chemical factors influencing host selection by Mexican bean beetle Epilachna varivestis Muls. Agric Food Chem 11:462–463

    Article  CAS  Google Scholar 

  54. Lieberei R (1988) Relationship of cyanogenic capacity (HCN-c) of the rubber tree Hevea brasiliensis to susceptibility to Microcyclus ulei, the agent causing South American leaf blight. J Phytopathol 122:54–67

  55. Marak HB, Biere a, Van Damme JMM (2000) Direct and correlated responses to selection on iridoid glycosides in Plantago lanceolata L. J Evol Biol 13:985–996. doi:10.1046/j.1420-9101.2000.00233.x

    Article  CAS  Google Scholar 

  56. Marak HB, Biere A, Van Damme JMM (2003) Fitness costs of chemical defense in Plantago lanceolata L.: effects of nutrient and competition stress. Evolution 57:2519–2530

    PubMed  Article  CAS  Google Scholar 

  57. Massad TJ, Dyer LA, Vega CG (2012) Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS ONE 7:e47554. doi:10.1371/journal.pone.0047554

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  58. Moles AT, Peco B, Wallis IR et al (2013) Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat? New Phytol 198:252–263. doi:10.1111/nph.12116

    PubMed  Article  Google Scholar 

  59. Noitsakis B, Jacquard P (1992) Competition between cyanogenic and acyanogenic morphs of Trifolium repens. Theor Appl Genet 83:443–450

    PubMed  Article  CAS  Google Scholar 

  60. Nomura M, Hatada A, Itioka T (2011) Correlation between the leaf turnover rate and anti-herbivore defence strategy (balance between ant and non-ant defences) amongst ten species of Macaranga (Euphorbiaceae). Plant Ecol 212:143–155. doi:10.1007/s11258-010-9810-1

    Article  Google Scholar 

  61. Rask L, Andréasson E, Ekbom B et al (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    PubMed  Article  CAS  Google Scholar 

  62. Read J, Sanson GD, Caldwell E et al (2009) Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia. Ann Bot 103:757–767. doi:10.1093/aob/mcn246

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  63. Rees M (1995) Community structure in sand dune annuals: is seed weight a key quantity? Oecologia 83:857–863

    Google Scholar 

  64. Rees M, Brown VK (1992) Interactions between invertebrate herbivores and plant competition. J Ecol 80:353–360

    Article  Google Scholar 

  65. Richards AJ, Fletcher A (2002) The effects of altitude, aspect, grazing and time on the proportion of cyanogenics in neighbouring populations of Trifolium repens L. (white clover). Heredity 88:432–436

  66. Selmar D, Lieberei R, Conn EE, Biehl B (1989) a -Hydroxynitrile lyase inHevea brasiliensis and its significance for rapid cyanogenesis. Physiol Plant 75: 97–101

  67. Schädler M, Brandl R, Haase J (2007) Antagonistic interactions between plant competition and insect herbivory. J Ecol 88:1490–1498

    Article  Google Scholar 

  68. Siemens DH, Garner SH, Mitchell-Olds T, Callaway RM (2002) Cost of defense in the context of plant competition: Brassica rapa may grow and defend. Ecology 83:505–517

    Article  Google Scholar 

  69. Simms EL, Taylor DL (2002) Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Integr Comp Biol 42:369–380

  70. Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    PubMed  Article  Google Scholar 

  71. Thamer S, Schädler M, Bonte D, Ballhorn DJ (2011) Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 341:209–219. doi:10.1007/s11104-010-0635-4

    Article  CAS  Google Scholar 

  72. Viola DV, Mordecai EA, Jaramillo AG et al (2010) Competition-defense tradeoffs and the maintenance of plant diversity. Proc Natl Acad Sci USA 107:17217–17222. doi:10.1073/pnas.1007745107

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  73. Wilson SD, Tilman D (1991) Component of plant competition along an experimental gradient of nitrogen availability. Ecology 72:1050–1065

    Article  Google Scholar 

Download references

Acknowledgments

Startup funds to D.J.B. from Portland State University are gratefully acknowledged. S.K. was supported by a postdoctoral fellowship (grant LPDS 2009-29) from the German Academy of Sciences Leopoldina. The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Ballhorn.

Additional information

Communicated by Diethart Matthies.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballhorn, D.J., Godschalx, A.L., Smart, S.M. et al. Chemical defense lowers plant competitiveness. Oecologia 176, 811–824 (2014). https://doi.org/10.1007/s00442-014-3036-1

Download citation

Keywords

  • Cyanogenesis
  • Herbivory
  • Growth-differentiation balance hypothesis
  • Lima bean
  • Tradeoff