A tree-ring perspective on the terrestrial carbon cycle

Abstract

Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually-resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    PubMed  Google Scholar 

  2. Andersen HE, McGaughey RJ, Reutebuch SE (2005) Forest measurement and monitoring using high-resolution airborne lidar. In: Harrington CA, Schoenholtz SH (eds) Productivity of western forests: a forest products focus. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, pp 109–120

  3. Andreu-Hayles L et al (2011) Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Glob Change Biol 17:2095–2112

    Google Scholar 

  4. Babst F, Esper J, Parlow E (2010) Landsat TM/ETM plus and tree-ring based assessment of spatiotemporal patterns of the autumnal moth (Epirrita autumnata) in northernmost Fennoscandia. Remote Sens Environ 114:637–646

    Google Scholar 

  5. Babst F et al (2013) Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol 201:1289–1303

    PubMed  Google Scholar 

  6. Babst F, Bouriaud O, Alexander R, Trouet V, Frank D (2014a) Toward consistent measurements of carbon accumulation: a multi-site assessment of biomass and basal area increment across Europe. Dendrochronologia 32(2):153–161

  7. Babst F et al (2014b) Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol 201:1289–1303

    PubMed  CAS  Google Scholar 

  8. Bale JS et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Google Scholar 

  9. Battipaglia G et al (2010) Five centuries of Central European temperature extremes reconstructed from tree-ring density and documentary evidence. Glob Planet Change 72:182–191

    Google Scholar 

  10. Battipaglia G et al (2013) Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol 197:544–554

    PubMed  CAS  Google Scholar 

  11. Beck PSA et al (2013) A large-scale coherent signal of canopy status in maximum latewood density of tree rings at arctic tree line in North America. Glob Planet Change 100:109–118

    Google Scholar 

  12. Beer C et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838

    PubMed  CAS  Google Scholar 

  13. Bellassen V, le Maire G, Guin O, Dhote JF, Ciais P, Viovy N (2011) Modelling forest management within a global vegetation model—part 2: model validation from a tree to a continental scale. Ecol Model 222:57–75

    Google Scholar 

  14. Belmecheri S, Maxwell RS, Taylor AH, Davis KJ, Freeman KH, Munger WJ (2014) Tree-ring d13C tracks flux-tower ecosystem productivity estimates in a NE temperate forest. Environ Res Lett 9:074011

  15. Berger T, Köllensperger G, Wimmer R (2004) Plant-soil feedback in spruce (Picea abies) and mixed spruce-beech (Fagus sylvatica) stands as indicated by dendrochemistry. Plant Soil 264:69–83

    CAS  Google Scholar 

  16. Berner LT, Beck PSA, Bunn AG, Lloyd AH, Goetz SJ (2011) High-latitude tree growth and satellite vegetation indices: correlations and trends in Russia and Canada (1982–2008). J Geophys Res Biogeosci 116:G01015

    Google Scholar 

  17. Berryman AA (1996) What causes population cycles of forest Lepidoptera? Trends Ecol Evol 11:28–32

    PubMed  CAS  Google Scholar 

  18. Blennow K, Olofsson E (2008) The probability of wind damage in forestry under a changed wind climate. Clim Change 87:347–360

    Google Scholar 

  19. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    PubMed  CAS  Google Scholar 

  20. Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247

    Google Scholar 

  21. Boulanger Y, Arseneault D (2004) Spruce budworm outbreaks in eastern Quebec over the last 450 years. Can J For Res 34:1035–1043

    Google Scholar 

  22. Bouriaud O, Bréda N, Dupouey JL, Granier A (2005) Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Can J For Res 35:2920–2933

    Google Scholar 

  23. Breda N, Granier A (1996) Intra- and interannual variations of transporation, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann For Sci 53:521–536

    Google Scholar 

  24. Breitenmoser P, Brönnimann S, Frank D (2014) Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies. Clim Past 10:437–449

    Google Scholar 

  25. Breshears DD, Allen CD (2002) The importance of rapid, disturbance-induced losses in carbon management and sequestration. Glob Ecol Biogeogr 11:1–5

    Google Scholar 

  26. Brienen RJW, Zuidema PA (2006) Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol 94:481–493

    Google Scholar 

  27. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemisphere: part 1, local and regional climate signals. Holocene 12:737–757

    Google Scholar 

  28. Brooks JR, Mitchell AK (2011) Interpreting tree responses to thinning and fertilization using tree-ring stable isotopes. New Phytol 190:770–782

    PubMed  CAS  Google Scholar 

  29. Brown PM, Wu R (2005) Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ecology 86:3030–3038

    Google Scholar 

  30. Brüggemann N et al (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489

    Google Scholar 

  31. Buchwal A, Rachlewicz G, Fonti P, Cherubini P, Gärtner H (2013) Temperature modulates intra-plant growth of Salix polaris from a high Arctic site (Svalbard). Polar Biol 36:1305–1318

    Google Scholar 

  32. Bunn AG et al (2013) Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia. Environ Res Lett 8:035034

    Google Scholar 

  33. Büntgen U et al (2011) 2500 years of European climate variability and human susceptibility. Science 331:578–582

    PubMed  Google Scholar 

  34. Campbell R, McCarroll D, Loader NJ, Grudd H, Robertson I, Jalkanen R (2007) Blue intensity in Pinus sylvestris tree-rings: developing a new palaeoclimate proxy. Holocene 17:821–828

    Google Scholar 

  35. Campelo F, Vieira J, Nabais C (2013) Tree-ring growth and intra-annual density fluctuations of Pinus pinaster responses to climate: does size matter? Trees 27:763–772

    Google Scholar 

  36. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    PubMed  CAS  Google Scholar 

  37. Chambers JQ, Fisher JI, Zeng H, Chapman EL, Baker DB, Hurtt GC (2007) Hurricane Katrina’s carbon footprint on US Gulf coast forests. Science 318:1107

    PubMed  CAS  Google Scholar 

  38. Chen JM, Liu J, Cihlar J, Goulden ML (1999) Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol Model 124:99–119

    CAS  Google Scholar 

  39. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and fiels methods. Ecol Appl 11:356–370

    Google Scholar 

  40. Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136

    Google Scholar 

  41. Cufar K, Prislan P, de Luis M, Gricar J (2008) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees-Struct Funct 22:749–758

    Google Scholar 

  42. Cuny H, Rathgeber C, Frank D, Fonti P, Fournier M (2014) Kinetics of tracheid development explain conifer tree-ring structure. New Phytol. doi:10.1111/nph.12871

    PubMed  Google Scholar 

  43. Daniels LD, Dobry J, Klinka K, Feller MC (1997) Determining year of death of logs and snags of Thuja plicata in southwestern coastal British Columbia. Can J For Res 27:1132–1141

    Google Scholar 

  44. D’Arrigo RD, Malmstrom CM, Jacoby GC, Los SO, Bunker DE (2000) Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity. Int J Remote Sens 21:2329–2336

    Google Scholar 

  45. Davis SC, Hessl AE, Scott CJ, Adams MB, Thomas RB (2009) Forest carbon sequestration changes in response to timber harvest. For Ecol Manag 258:2101–2109

    Google Scholar 

  46. Dié A, Kitin P, Kouame FNG, Van den Bulcke J, Van Acker J, Beeckman H (2012) Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast. Ann Bot 110:861–873

    PubMed  PubMed Central  Google Scholar 

  47. Dietze MC et al (2014) Nonstructural carbon in woody plants. Annu Rev Plant Biol 65:667–687

    PubMed  CAS  Google Scholar 

  48. Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639

    PubMed  CAS  Google Scholar 

  49. Drever CR, Lertzman KP (2001) Light-growth responses of coastal Douglas-fir and western redcedar saplings under different regimes of soil moisture and nutrients. Can J For Res 31:2124–2133

    Google Scholar 

  50. Esper J, Buntgen U, Frank DC, Nievergelt D, Liebhold A (2007) 1200 years of regular outbreaks in alpine insects. Proc R Soc Lond B 274:671–679

    Google Scholar 

  51. Esper J et al (2012) Orbital forcing of tree-ring data. Nat Clim Change 2:862–866

    Google Scholar 

  52. Etzold S, Zweifel R, Ruehr NK, Eugster W, Buchmann N (2013) Long-term stem CO2 concentration measurements in Norway spruce in relation to biotic and abiotic factors. New Phytol 197:1173–1184

    PubMed  CAS  Google Scholar 

  53. Fahey TJ et al (2009) Forest carbon storage: ecology, management, and policy. Front Ecol Environ 8:245–252

    Google Scholar 

  54. Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. Physiological plant ecology II, vol 12/B. Springer, Berlin, pp 549–587

    Google Scholar 

  55. Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18:483–507

    Google Scholar 

  56. Franceschini T et al (2012) Empirical models for radial and tangential fibre width in tree rings of Norway spruce in north-western Europe. Holzforschung 66:219–230

    CAS  Google Scholar 

  57. Frank DC, Büntgen U, Esper J (2009) Comment on “late 20th century growth acceleration in Greek firs (Abies cephalonica) from Cephalonica Island, Greece: a CO2 fertilization effect?”. Dendrochronologia 27:223–227

    Google Scholar 

  58. Frank DC et al (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463:527–U143

    Google Scholar 

  59. Franks PJ, Adams M, Amthor J, Barbour M, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N, Norby R, Tissue D, von Caemmerer S (2013) Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol 197:1077–1094

    PubMed  CAS  Google Scholar 

  60. Friedlingstein P et al (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Google Scholar 

  61. Friedlingstein P et al (2010) Update on CO2 emissions. Nat Geosci 3:811–812

    CAS  Google Scholar 

  62. Fritts HC (1976) Tree rings and climate. Blackburn, Caldwell

    Google Scholar 

  63. Frolking S, Palace MW, Clark DB, Chambers JQ, Shugart HH, Hurtt GC (2009) Forest disturbance and recovery: a general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J Geophys Res Biogeosci 114:G00E02

    Google Scholar 

  64. Gedalof Z, Berg AA (2010) Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob Biogeochem Cycl 24:GB3027

    Google Scholar 

  65. Gessler A, Brandes E, Buchmann N, Helle G, Rennenberg H, Barnard RL (2009) Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. Plant Cell Environ 32:780–795

    PubMed  CAS  Google Scholar 

  66. Gessler A, Ferrio JP, Hommel R, Treydte K, Werner RA, Monson RK (2014) Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol. doi:10.1093/treephys/tpu040

    PubMed  Google Scholar 

  67. Girardin MP, Bernier PY, Raulier F, Tardif JC, Conciatori F, Guo XJ (2011) Testing for a CO2 fertilization effect on growth of Canadian boreal forests. J Geophys Res 116:G01012

    Google Scholar 

  68. Girardin MP, Guo XJ, De Jong R, Kinnard C, Bernier P, Raulier F (2014) Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice. Glob Change Biol 20:851–866

    Google Scholar 

  69. Granier A, Bréda N, Longdoz B, Gross P, Ngao J (2008) Ten years of fluxes and stand growth in a young beech forest at Hesse North-eastern France. Ann For Sci 65:704

    Google Scholar 

  70. Hadley KS, Knapp PA (2011) Detection of high-wind events using tree-ring data. Can J For Res 41:1121–1129

    Google Scholar 

  71. Harcombe PA, Greene SE, Kramer MG, Acker SA, Spies TA, Valentine T (2004) The influence of fire and windthrow dynamics on a coastal spruce-hemlock forest in Oregon, USA, based on aerial photographs spanning 40 years. For Ecol Manag 194:71–82

    Google Scholar 

  72. Hättenschwiler S, Miglietta F, Raschi A, Koner C (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Glob Change Biol 3:463–471

    Google Scholar 

  73. Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco—an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27:367–380

    CAS  Google Scholar 

  74. Hicke JA et al (2012) Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Change Biol 18:7–34

    Google Scholar 

  75. Hogg EH, Brandt JP, Kochtubajda B (2005) Factors affecting interannual variation in growth of western Canadian aspen forests during 1951–2000. Can J For Res 35:610–622

    Google Scholar 

  76. Houborg R, Cescatti A, Migliavacca M, Kustas WP (2013) Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP. Agric For Meteorol 177:10–23

    Google Scholar 

  77. Huang J-G, Bergeron Y, Denneler B, Berninger F, Tardif J (2007) Response of forest trees to increased atmospheric CO2. Crit Rev Plant Sci 26:265–283

    CAS  Google Scholar 

  78. Johnson D, Büntgen U, Frank DC, Kausrud K, Haynes K, Liebhold A, Esper J, Stenseth NC (2010) Climatic warming disrupts recurrent Alpine insect outbreaks. Proc Natl Acad Sci USA 107:20576–20581

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Jones PD et al (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49

    Google Scholar 

  80. Jones C et al (2013) 21st century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under 4 representative concentration pathways. J Clim 26:4398–4413

    Google Scholar 

  81. Joosten R, Schumacher J, Wirth C, Schulte A (2004) Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. For Ecol Manag 189:87–96

    Google Scholar 

  82. Kaplan JO, Krumhardt KM, Zimmermann NE (2012) The effects of land use and climate change on the carbon cycle of Europe over the past 500 years. Glob Change Biol 18:902–914

    Google Scholar 

  83. Kasischke ES, Williams D, Barry D (2002) Analysis of the patterns of large fires in the boreal forest region of Alaska. Int J Wildland Fire 11:131–144

    Google Scholar 

  84. Kasischke ES et al (2013) Impacts of disturbance on the terrestrial carbon budget of North America. J Geophys Res Biogeosci 118:303–316

    CAS  Google Scholar 

  85. Keenan T, Carbone M, Reichstein M, Richardson A (2011) The model-data fusion pitfall: assuming certainty in an uncertain world. Oecologia 167:587–597

    PubMed  Google Scholar 

  86. Keenan TF, Davidson E, Moffat AM, Munger W, Richardson AD (2012) Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling. Glob Change Biol 18:2555–2569

    Google Scholar 

  87. Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS (2013) Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc Natl Acad Sci USA 110:13055–13060

    PubMed  CAS  PubMed Central  Google Scholar 

  88. King G, Fonti P, Nievergelt D, Büntgen U, Frank D (2013) Climatic drivers of hourly to yearly tree radius variations along a 6°C natural warming gradient. Agric For Meteorol 168:36–46

    Google Scholar 

  89. Komonen A, Schroeder LM, Weslien J (2011) Ips typographus population development after a severe storm in a nature reserve in southern Sweden. J Appl Entomol 135:132–141

    Google Scholar 

  90. Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf R, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    PubMed  Google Scholar 

  91. Koutavas A (2013) CO2 fertilization and enhanced drought resistance in Greek firs from Cephalonia Island, Greece. Glob Change Biol 19:529–539

    Google Scholar 

  92. Kucharik CJ, Barford CC, Maayar ME, Wofsy SC, Monson RK, Baldocchi DD (2006) A multiyear evaluation of a dynamic global vegetation model at three AmeriFlux forest sites: vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange. Ecol Model 196:1–31

    Google Scholar 

  93. Kuptz D, Fleischmann F, Matyssek R, Grams T (2011) Seasonal patterns of carbon allocation to respiratory pools in 60-year-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytol 191:160–172

    PubMed  Google Scholar 

  94. Laube J, Sparks TH, Estrella N, Höfler J, Ankerst DP, Menzel A (2014) Chilling outweighs photoperiod in preventing precocious spring development. Glob Change Biol 20:170–182

    Google Scholar 

  95. Law B (2013) Biogeochemistry: nitrogen deposition and forest carbon. Nature 496:307–308

    PubMed  CAS  Google Scholar 

  96. Le Quéré C et al (2013) The global carbon budget 1959-2011. Earth Syst Sci Data Discuss 5:1107–1157

    Google Scholar 

  97. Levesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A (2014) Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol 203:94–109

    PubMed  CAS  Google Scholar 

  98. Li G, Harrison SP, Prentice IC, Falster D (2014) Simulation of tree ring-widths with a model for primary production, carbon allocation and growth. Biogeosci Discuss 11:10451–10485

    Google Scholar 

  99. Lindroth A et al (2009) Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol 15:346–355

    Google Scholar 

  100. Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Change Biol 13:2089–2109

    Google Scholar 

  101. Magney TS, Eusden SA, Eitel JUH, Logan BA, Jiang J, Vierling LA (2014) Assessing leaf photoprotective mechanisms using terrestrial LiDAR: towards mapping canopy photosynthetic performance in three dimensions. New Phytol 201:344–356

    PubMed  Google Scholar 

  102. Malmström CM, Thompson MV, Juday GP, Los SO, Randerson JT, Field CB (1997) Interannual variation in global-scale net primary production: testing model estimates. Glob Biogeochem Cycl 11:367–392

    Google Scholar 

  103. Masek JG et al (2011) Recent rates of forest harvest and conversion in North America. J Geophys Res Biogeosci 116:G00K03

    Google Scholar 

  104. Masson-Delmotte V et al (2005) Changes in European precipitation seasonality and in drought frequencies revealed by a four-century-long tree-ring isotopic record from Brittany, western France. Clim Dyn 24:57–69

    Google Scholar 

  105. McCullough DG, Werner RA, Neumann D (1998) Fire and insects in Northern and Boreal forest ecosystems of North America1. Annu Rev Entomol 43:107–127

    PubMed  CAS  Google Scholar 

  106. McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532

    PubMed  Google Scholar 

  107. McMahon SM, Parker GG, Miller DR (2010) Evidence for a recent increase in forest growth. Proc Natl Acad Sci USA 107:3611–3615

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Medlyn BE et al (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495

    CAS  Google Scholar 

  109. Moore DJP, Aref S, Ho RM, Pippen JS, Hamilton JG, De Lucia EH (2006) Annual basal area increment and growth duration of Pinus taeda in response to eight years of free-air carbon dioxide enrichment. Glob Change Biol 12:1367–1377

    Google Scholar 

  110. Moser L et al (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233

    PubMed  Google Scholar 

  111. Nehrbass-Ahles C et al (2014) The influence of sampling design on tree-ring based quantification of forest growth. Glob Change Biol. doi:10.1111/gcb.12599

    Google Scholar 

  112. Nickless A, Scholes RJ, Archibald S (2011) A method for calculating the variance and confidence intervals for tree biomass estimates obtained from allometric equations : research article. S Afr J Sci 107:1–10

    Google Scholar 

  113. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    PubMed  CAS  Google Scholar 

  115. Pan Y et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    PubMed  CAS  Google Scholar 

  116. Pederson N et al (2014) The legacy of episotic climatic events in shaping temperate, broadleaf forests. Ecol Monogr. http://dx.doi.org/10.1890/13-1025.1

  117. Peñuelas J, Canadell JG, Ogaya R (2011) Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeogr 20:597–608

    Google Scholar 

  118. Piao S et al (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Change Biol 19:2117–2132

    Google Scholar 

  119. Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–941

    PubMed  Google Scholar 

  120. Poulter B, Frank DC, Hodson EL, Zimmermann NE (2011) Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences 8:2027–2036

    CAS  Google Scholar 

  121. Poulter B et al (2013) Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agric For Meteorol 178–179:31–45

    Google Scholar 

  122. Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running S, sitch S, van der Werf GR (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature. doi: 10.1038/nature13376

  123. Proulx OJ, Greene DF (2001) The relationship between ice thickness and northern hardwood tree damage during ice storms. Can J For Res 31:1758–1767

    Google Scholar 

  124. Pumijumnong N, Buajan S (2013) Seasonal cambial activity of five tropical tree species in central Thailand. Trees 27:409–417

    Google Scholar 

  125. Reichstein M et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295

    PubMed  CAS  Google Scholar 

  126. Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–331

    PubMed  CAS  Google Scholar 

  127. Richardson A et al (2010) Estimating parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint constraints. Oecologia 164:25–40

    PubMed  Google Scholar 

  128. Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Google Scholar 

  129. Roden J, Siegwolf R (2012) Is the dual-isotope conceptual model fully operational? Tree Physiol 32:1179–1182

    PubMed  Google Scholar 

  130. Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35

    CAS  Google Scholar 

  131. Rossi S, Girard MJ, Morin H (2014) Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob Change Biol 20:2261–2271

  132. Rubino DL, McCarthyz BC (2004) Comparative analysis of dendroecological methods used to assess disturbance events. Dendrochronologia 21:97–115

    Google Scholar 

  133. Running SW (2008) Ecosystem disturbance, carbon, and climate. Science 321:652–653

    PubMed  CAS  Google Scholar 

  134. Sarris D, Siegwolf R, Körner C (2013) Inter- and intra-annual stable carbon and oxygen isotope signals in response to drought in Mediterranean pines. Agric For Meteorol 168:59–68

    Google Scholar 

  135. Scheidegger Y, Saurer M, Bahn M, Siegwolf R (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357

    Google Scholar 

  136. Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci USA 103:13116–13120

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Schweingruber FH, Braker OU, Schar E (1979) Dendro-climatic studies on conifers from central Europe and Great Britain. Boreas 8:427–452

    Google Scholar 

  138. Seidl R, Blennow K (2012) Pervasive growth reduction in norway spruce forests following wind disturbance. PLoS ONE 7:e33301

    CAS  Google Scholar 

  139. Seneviratne SI (2012) Climate science: historical drought trends revisited. Nature 491:338–339

    PubMed  CAS  Google Scholar 

  140. Simard S et al (2013) Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiol 33:913–923

    PubMed  CAS  Google Scholar 

  141. Sitch S et al (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob Change Biol 14:2015–2039

    Google Scholar 

  142. Smith M-L, Ollinger SV, Martin ME, Aber JD, Hallett RA, Goodale CL (2002) Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecol Appl 12:1286–1302

    Google Scholar 

  143. Speer JH, Swetnam TW, Wickman BE, Youngblood A (2001) Changes in pandora moth outbreak dynamics during the past 622 years. Ecology 82:679–697

    Google Scholar 

  144. St. George S, Ault TR (2014) The imprint of climate within Northern Hemisphere trees. Quatern Sci Rev 89:1–4

    Google Scholar 

  145. Stephenson NL, Das AJ, condit R et al (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93

    PubMed  CAS  Google Scholar 

  146. Swetnam TW (1993) Fire history and climate change in Giant Sequoia Groves. Science 262:885–889

    PubMed  CAS  Google Scholar 

  147. Swetnam TW, Baisan CH (1996) Fire histories of Montane forests in the Madrean borderlands. In: Ffolliott PF et al. (eds) Effects of fire on madrean province ecosystems—a symposium proceedings, vol 289, pp 15–36

  148. Taylor AH, Skinner CN (1998) Fire history and landscape dynamics in a late-successional reserve, Klamath Mountains, California, USA. For Ecol Manag 111:285–301

    Google Scholar 

  149. Tolwinski-Ward SE, Evans MN, Hughes MK, Anchukaitis KJ (2011) An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim Dyn 36:2419–2439

    Google Scholar 

  150. Treydte K, Boda S, Pannatier EG, Fonti P, Frank D, Ullrich B, Saurer M, Siegwolf R, Battipaglia G, Werner W, Gessler A (2014) Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment. New Phytol. doi:10.1111/nph.12741

    PubMed  Google Scholar 

  151. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent Positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science 324:78–80

    PubMed  CAS  Google Scholar 

  152. Trouet V, Taylor AH, Wahl ER, Skinner CN, Stephens SL (2010) Fire-climate interactions in the American West since 1400 CE. Geophys Res Lett 37:L04702

  153. Trouet V, Mukelabai M, Verheyden A, Beeckman H (2012) Cambial Growth Season of Brevi-Deciduous Brachystegia spiciformis trees from South Central Africa restricted to less than four months. PLoS ONE 7:e47364

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Turetsky MR et al (2011) Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci 4:27–31

    CAS  Google Scholar 

  155. Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Springer, Berlin

    Google Scholar 

  157. van der Maaten-Theunissen M, Bouriaud O (2012) Climate-growth relationships at different stem heights in silver fir and Norway spruce. Can J For Res 42:958–969

    Google Scholar 

  158. Veblen TT, Hadley KS, Nel EM, Kitzberger T, Reid M, Villalba R (1994) Disturbance regime and disturbance interactions in a rocky mountain Subalpine forest. J Ecol 82:125–135

    Google Scholar 

  159. Weber P, Bugmann H, Fonti P, Rigling A (2008) Using a retrospective dynamic competition index to reconstruct forest succession. For Ecol Manag 254:96–106

    Google Scholar 

  160. Weisberg PJ, Swanson FJ (2003) Regional synchroneity in fire regimes of western Oregon and Washington, USA. For Ecol Manag 172:17–28

    Google Scholar 

  161. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943

    PubMed  CAS  Google Scholar 

  162. Wettstein JJ, Littell JS, Wallace JM, Gedalof Ze (2011) Coherent region-, species-, and frequency-dependent local climate signals in Northern Hemisphere tree-ring widths. J Clim 24:5998–6012

    Google Scholar 

  163. Woodruff DR, Meinzer FC (2011) Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant Cell Environ 34:1920–1930

    PubMed  CAS  Google Scholar 

  164. Yue C et al (2013) Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model. Biogeosci Discuss 10:7299–7366

    Google Scholar 

  165. Zell J, Bösch B, Kändler G (2014) Estimating above-ground biomass of trees: comparing Bayesian calibration with regression technique. Eur J For Res 133:649–660

  166. Zeng H, Chambers JQ, Negrón-Juárez RI, Hurtt GC, Baker DB, Powell MD (2009) Impacts of tropical cyclones on US forest tree mortality and carbon flux from 1851 to 2000. Proc Natl Acad Sci USA 106:7888–7892

  167. Zhao M, Running SW (2010) Drought-induced reduction in Global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    PubMed  CAS  Google Scholar 

  168. Zianis D, Muukkonen P, Makipaa R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr 4:1–63

  169. Zingg A (1996) Diameter and basal area increment in permanent growth and yield plots in Switzerland. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in European forests. Springer, Berlin, pp 239–265

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (Grant PBSKP2_144034) and the US Department of Energy (Grant DE-FOA-000749). O.B. acknowledges funding from project FP7-ENV-2009-1-244122 GHG Europe. The authors thank Patrick Fonti and Gregory King for preparing the thin sections shown in Figs. 2 and 4. We also thank Russell Monson and Alicja Babst-Kostecka for their helpful comments and support. We apologize to all authors whose relevant studies could not be cited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Flurin Babst.

Additional information

Communicated by Russell K. Monson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babst, F., Alexander, M.R., Szejner, P. et al. A tree-ring perspective on the terrestrial carbon cycle. Oecologia 176, 307–322 (2014). https://doi.org/10.1007/s00442-014-3031-6

Download citation

Keywords

  • Forest
  • Productivity
  • Growth
  • Climate
  • Ecosystem