Skip to main content
Log in

Delayed density-dependent parasitism of eggs and pupae as a contributor to the cyclic population dynamics of the autumnal moth

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Many populations of forest Lepidoptera exhibit 10-year cycles in densities, with impressive outbreaks across large regions. Delayed density-dependent interactions with natural enemies are recognized as key factors driving these cyclic population dynamics, but emphasis has typically been on the larval stages. Eggs, pupae and adults also suffer mortality from predators, parasitoids and pathogens, but little is known about possible density relationships between mortality factors and these non-feeding life stages. In a long-term field study, we experimentally deployed autumnal moth (Epirrita autumnata) eggs and pupae to their natural enemies yearly throughout the 10-year population cycle in northern Norway. The abundance of another geometrid, the winter moth (Operophtera brumata), increased in the study area, permitting comparisons between the two moth species in predation and parasitism. Survival of autumnal moth eggs and pupae was related to the moth abundance in an inverse and delayed manner. Egg and pupal parasitoids dominated as density-dependent mortality factors and predicted the subsequent growth rate of the host population size. In contrast, effects of egg and pupal predators were weakly density dependent, and generally predation remained low. Parasitism rates did not differ between the autumnal and winter moth pupae, whereas predators preferred winter moth pupae over those of the autumnal moth. We conclude that parasitism of the autumnal moth by egg and pupal parasitoids can be related to the changes of the moth density in a delayed density-dependent manner. Furthermore, egg and pupal parasitoids cannot be overlooked as causal factors for the population cycles of forest Lepidoptera in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ammunét T, Kaukoranta T, Saikkonen K, Repo T, Klemola T (2012) Invading and resident defoliators in a changing climate: cold tolerance and predictions concerning extreme winter cold as a range-limiting factor. Ecol Entomol 37:212–220. doi:10.1111/j.1365-2311.2012.01358.x

    Article  Google Scholar 

  • Ammunét T, Klemola T, Parvinen K (2014) Consequences of asymmetric competition between resident and invasive defoliators: a novel empirically based modelling approach. Theor Popul Biol 92:107–117. doi:10.1016/j.tpb.2013.12.006

    Article  PubMed  Google Scholar 

  • Andersson M, Erlinge S (1977) Influence of predation on rodent populations. Oikos 29:591–597

    Article  Google Scholar 

  • Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, Frankel SJ, Haight RG, Holmes TP, Liebhold AM, McCullough DG, Von Holle B (2011) Economic impacts of non-native forest insects in the continental US. PLoS One 6:e24587. doi:10.1371/journal.pone.0024587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baltensweiler W, Benz G, Bovey P, Delucchi V (1977) Dynamics of larch bud moth populations. Annu Rev Entomol 22:79–100. doi:10.1146/annurev.en.22.010177.000455

    Article  Google Scholar 

  • Berryman AA (1996) What causes population cycles of forest Lepidoptera? Trends Ecol Evol 11:28–32. doi:10.1016/0169-5347(96)81066-4

    Article  CAS  PubMed  Google Scholar 

  • Berryman AA (2002) Population cycles: the case for trophic interactions. Oxford University Press, New York

    Google Scholar 

  • Berryman AA, Stenseth NC, Isaev AS (1987) Natural regulation of herbivorous forest insect populations. Oecologia 71:174–184. doi:10.1007/BF00377282

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Dwyer G, Dushoff J, Yee SH (2004) The combined effects of pathogens and predators on insect outbreaks. Nature 430:341–345. doi:10.1038/nature02569

    Article  CAS  PubMed  Google Scholar 

  • East R (1974) Predation on the soil-dwelling stages of the winter moth at Wytham woods, Berkshire. J Anim Ecol 43:611–626

    Article  Google Scholar 

  • Elderd BD, Rehill BJ, Haynes KJ, Dwyer G (2013) Induced plant defenses, host–pathogen interactions, and forest insect outbreaks. Proc Natl Acad Sci USA 110:14978–14983. doi:10.1073/pnas.1300759110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elkinton JS, Healy WM, Buonaccorsi JP, Boettner GH, Hazzard AM, Smith HR, Liebhold AM (1996) Interactions among gypsy moths, white-footed mice, and acorns. Ecology 77:2332–2342. doi:10.2307/2265735

    Article  Google Scholar 

  • Elkinton JS, Liebhold AM, Muzika RM (2004) Effects of alternative prey on predation by small mammals on gypsy moth pupae. Popul Ecol 46:171–178. doi:10.1007/s10144-004-0175-y

    Article  Google Scholar 

  • Elton C (1924) Periodic fluctuations in the numbers of animals: their causes and effects. Br J Exp Biol 2:119–163

    Google Scholar 

  • Frank JH (1967a) The effect of pupal predators on a population of winter moth, Operopthera brumata (L.) (Hydriomenidae). J Anim Ecol 36:611–621

    Article  Google Scholar 

  • Frank JH (1967b) The insect predators of the pupal stage of the winter moth, Operopthera brumata (L.) (Lepidoptera: Hydriomenidae). J Anim Ecol 36:375–389

    Article  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815. doi:10.1890/02-3114

    Article  Google Scholar 

  • Hagen SB, Jepsen JU, Schott T, Ims RA (2010) Spatially mismatched trophic dynamics: cyclically outbreaking geometrids and their larval parasitoids. Biol Lett 6:566–569. doi:10.1098/rsbl.2009.1002

    Article  PubMed Central  PubMed  Google Scholar 

  • Hansen NM, Ims RA, Hagen SB (2009) No impact of pupal predation on the altitudinal distribution of autumnal moth and winter moth (Lepidoptera: Geometridae) in sub-arctic birch forest. Environ Entomol 38:627–632. doi:10.1603/022.038.0313

    Article  PubMed  Google Scholar 

  • Haukioja E, Neuvonen S, Hanhimäki S, Niemelä P (1988) The autumnal moth in Fennoscandia. In: Berryman AA (ed) Dynamics of forest insect populations: patterns, causes, and implications. Plenum, London, pp 163–178

    Chapter  Google Scholar 

  • Haynes KJ, Liebhold AM, Fearer TM, Wang G, Norman GW, Johnson DM (2009) Spatial synchrony propagates through a forest food web via consumer–resource interactions. Ecology 90:2974–2983. doi:10.1890/08-1709.1

    Article  PubMed  Google Scholar 

  • Hegazi EM, Khafagi WE (2000) Possible bases of pseudoparasitism in Spodoptera littoralis larvae stung by Microplitis rufiventris. J Insect Physiol 46:1267–1274. doi:10.1016/S0022-1910(00)00047-0

    Article  CAS  PubMed  Google Scholar 

  • Heisswolf A, Klemola N, Ammunét T, Klemola T (2009) Responses of generalist invertebrate predators to pupal densities of autumnal and winter moths under field conditions. Ecol Entomol 34:709–717. doi:10.1111/j.1365-2311.2009.01121.x

    Article  Google Scholar 

  • Hogstad O (1997) Population fluctuations of Epirrita autumnata Bkh. and Operophtera brumata (L.) (Lep., Geometridae) during 25 years and habitat distribution of their larvae during a mass outbreak in a subalpine birch forest in Central Norway. Fauna Nor Ser B 44:1–10

    Google Scholar 

  • Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264. doi:10.1111/j.1365-2656.2007.01339.x

    Article  PubMed  Google Scholar 

  • Jepsen JU, Biuw M, Ims RA, Kapari L, Schott T, Vindstad OPL, Hagen SB (2013) Ecosystem impacts of a range expanding forest defoliator at the forest-tundra ecotone. Ecosystems 16:561–575. doi:10.1007/s10021-012-9629-9

    Article  Google Scholar 

  • Kareiva P, Odell G (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am Nat 130:233–270

    Article  Google Scholar 

  • Kenis M, Herz K, West RJ, Shaw MR (2005) Parasitoid assemblages reared from geometrid defoliators (lepidoptera: Geometridae) of larch and fir in the Alps. Agric For Entomol 7:307–318. doi:10.1111/j.1461-9555.2005.00277.x

    Article  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  CAS  PubMed  Google Scholar 

  • Klemola T, Tanhuanpää M, Korpimäki E, Ruohomäki K (2002) Specialist and generalist natural enemies as an explanation for geographical gradients in population cycles of northern herbivores. Oikos 99:83–94. doi:10.1034/j.1600-0706.2002.990109.x

    Article  Google Scholar 

  • Klemola T, Klemola N, Andersson T, Ruohomäki K (2007) Does immune function influence population fluctuations and level of parasitism in the cyclic geometrid moth? Popul Ecol 49:165–178. doi:10.1007/s10144-007-0035-7

    Article  Google Scholar 

  • Klemola T, Andersson T, Ruohomäki K (2008) Fecundity of the autumnal moth depends on pooled geometrid abundance without a time lag: implications for cyclic population dynamics. J Anim Ecol 77:597–604. doi:10.1111/j.1365-2656.2008.01369.x

    Article  PubMed  Google Scholar 

  • Klemola N, Heisswolf A, Ammunét T, Ruohomäki K, Klemola T (2009) Reversed impacts by specialist parasitoids and generalist predators may explain a phase lag in moth cycles: a novel hypothesis and preliminary field tests. Ann Zool Fenn 46:380–393. doi:10.5735/086.046.0504

    Article  Google Scholar 

  • Klemola N, Andersson T, Ruohomäki K, Klemola T (2010) Experimental test of parasitism hypothesis for population cycles of a forest lepidopteran. Ecology 91:2506–2513. doi:10.1890/09-2076.1

    Article  PubMed  Google Scholar 

  • Klomp H (1966) The dynamics of a field population of the pine looper, Bupalus piniarius L. (Lep., Geom.). Adv Ecol Res 3:207–305. doi:10.1016/S0065-2504(08)60312-8

    Article  Google Scholar 

  • Liebhold A, Elkinton J, Williams D, Muzika RM (2000) What causes outbreaks of the gypsy moth in North America? Popul Ecol 42:257–266. doi:10.1007/PL00012004

    Article  Google Scholar 

  • MacPhee AW (1967) The winter moth, Operophtera Brumata (Lepidoptera: Geometridae), a new pest attacking apple orchards in Nova Scotia, and its cold hardiness. Can Entomol 99:829–834. doi:10.4039/Ent99829-8

    Article  Google Scholar 

  • May RM (1981) Models for single populations. In: May RM (ed) Theoretical ecology: principles and applications. Blackwell, Oxford, pp 5–29

    Google Scholar 

  • Münster-Swendsen M (2002) The role of insect parasitoids in population cycles of the spruce needle miner in Denmark. In: Berryman AA (ed) Population cycles: the case for trophic interactions. Oxford University Press, New York, pp 29–43

    Google Scholar 

  • Myers JH (1988) Can a general hypothesis explain population cycles of forest Lepidoptera? Adv Ecol Res 18:179–242. doi:10.1016/S0065-2504(08)60181-6

    Article  Google Scholar 

  • Myers JH, Cory JS (2013) Population cycles in forest Lepidoptera revisited. Annu Rev Ecol Evol Syst 44:565–592. doi:10.1146/annurev-ecolsys-110512-135858

    Article  Google Scholar 

  • Neuvonen S, Niemelä P, Virtanen T (1999) Climatic change and insect outbreaks in boreal forests: the role of winter temperatures. Ecol Bull 47:63–67

    Google Scholar 

  • Nuessly GS, Sterling WL (1994) Mortality of Helicoverpa zea (Lepidoptera: Noctuidae) eggs in cotton as a function of oviposition sites, predator species, and desiccation. Environ Entomol 23:1189–1202

    Google Scholar 

  • Raymond B, Vanbergen A, Watt A, Hartley SE, Cory JS, Hails RS (2002) Escape from pupal predation as a potential cause of outbreaks of the winter moth, Operophtera brumata. Oikos 98:219–228. doi:10.1034/j.1600-0706.2002.980204.x

    Article  Google Scholar 

  • Régnière J, Nealis VG (2007) Ecological mechanisms of population change during outbreaks of the spruce budworm. Ecol Entomol 32:461–477. doi:10.1111/j.1365-2311.2007.00888.x

    Article  Google Scholar 

  • Roland J (1988) Decline in winter moth populations in North America: direct versus indirect effect of introduced parasites. J Anim Ecol 57:523–531

    Article  Google Scholar 

  • Roland J (1990) Interaction of parasitism and predation in the decline of winter moth in Canada. In: Watt AD, Leather SR, Hunter MD, Kidd NAC (eds) Population dynamics of forest insects. Intercept, Andover, pp 289–302

    Google Scholar 

  • Roland J (1994) After the decline: what maintains low winter moth density after successful biological control? J Anim Ecol 63:392–398

    Article  Google Scholar 

  • Royama T (1984) Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol Monogr 54:429–462. doi:10.2307/1942595

    Article  Google Scholar 

  • Ruohomäki K (1994) Larval parasitism in outbreaking and non-outbreaking populations of Epirrita autumnata (Lepidoptera, Geometridae). Entomol Fenn 5:27–34

    Google Scholar 

  • Ruohomäki K, Virtanen T, Kaitaniemi P, Tammaru T (1997) Old mountain birches at high altitudes are prone to outbreaks of Epirrita autumnata (Lepidoptera: Geometridae). Environ Entomol 26:1096–1104

    Google Scholar 

  • Ruohomäki K, Tanhuanpää M, Ayres MP, Kaitaniemi P, Tammaru T, Haukioja E (2000) Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): grandiose theory and tedious practice. Popul Ecol 42:211–223. doi:10.1007/PL00012000

    Article  Google Scholar 

  • Schott T, Hagen SB, Ims RA, Yoccoz NG (2010) Are population outbreaks in sub-arctic geometrids terminated by larval parasitoids? J Anim Ecol 79:701–708. doi:10.1111/j.1365-2656.2010.01673.x

    Article  PubMed  Google Scholar 

  • Schott T, Ims RA, Hagen SB, Yoccoz NG (2012) Sources of variation in larval parasitism of two sympatrically outbreaking birch forest defoliators. Ecol Entomol 37:471–479. doi:10.1111/j.1365-2311.2012.01386.x

    Article  Google Scholar 

  • Stroup WW (2013) Generalized linear mixed models: modern concepts, methods and applications. CRC, Boca Raton

    Google Scholar 

  • Tanhuanpää M, Ruohomäki K, Kaitaniemi P, Klemola T (1999) Different impact of pupal predation on populations of Epirrita autumnata (Lepidoptera: Geometridae) within and outside the outbreak range. J Anim Ecol 68:562–570. doi:10.1046/j.1365-2656.1999.00305.x

    Article  Google Scholar 

  • Tanhuanpää M, Ruohomäki K, Turchin P, Ayres MP, Bylund H, Kaitaniemi P, Tammaru T, Haukioja E (2002) Population cycles of the autumnal moth in Fennoscandia. In: Berryman AA (ed) Population cycles: the case for trophic interactions. Oxford University Press, New York, pp 142–154

    Google Scholar 

  • Tanhuanpää M, Ruohomäki K, Kaitaniemi P (2003) Influence of adult and egg predation on reproductive success of Epirrita autumnata (Lepidoptera: Geometridae). Oikos 102:263–272. doi:10.1034/j.1600-0706.2003.12546.x

    Article  Google Scholar 

  • Teder T, Tanhuanpää M, Ruohomäki K, Kaitaniemi P, Henriksson J (2000) Temporal and spatial variation of larval parasitism in non-outbreaking populations of a folivorous moth. Oecologia 123:516–524. doi:10.1007/s004420000346

    Article  Google Scholar 

  • Tenow O (1972) The outbreaks of Oporinia autumnata Bkh. and Operophthera spp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968. Zool Bidr Uppsala Suppl 2:1–107

    Google Scholar 

  • Tenow O, Bylund H, Holmgren B (2001) Impact on mountain birch forests in the past and the future of outbreaks of two geometrid insects. In: Wielgolaski FE (ed) Nordic mountain birch ecosystems. Unesco, Paris, pp 223–239

    Google Scholar 

  • Tenow O, Nilssen AC, Bylund H, Hogstad O (2007) Waves and synchrony in Epirrita autumnata/Operophtera brumata outbreaks. I. Lagged synchrony: regionally, locally and among species. J Anim Ecol 76:258–268. doi:10.1111/j.1365-2656.2006.01204.x

    Article  CAS  PubMed  Google Scholar 

  • Turchin P (2003) Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, Princeton

    Google Scholar 

  • Varley GC, Gradwell GR (1960) Key factors in population studies. J Anim Ecol 29:399–401

    Article  Google Scholar 

  • Vindstad OPL, Hagen SB, Schott T, Ims RA (2010) Spatially patterned guild structure in larval parasitoids of cyclically outbreaking winter moth populations. Ecol Entomol 35:456–463. doi:10.1111/j.1365-2311.2010.01201.x

    Google Scholar 

Download references

Acknowledgments

We thank all field assistants for their great help with the fieldwork. Ph.D. students and post doc researchers of the earlier autumnal moth projects, Tea Ammunét, Netta Klemola and Annette Scheiner, are especially acknowledged. Reijo Jussila, Ilari E. Sääksjärvi and Veli Vikberg are gratefully thanked for their help in parasitoid identification. We also thank Thomas Hoffmeister, Judith H. Myers, Seppo Neuvonen, Jens Roland and an anonymous referee for their valuable comments on the manuscript, the staff of the Kevo Subarctic Research Station for excellent working facilities and the staff of the Statskog for permissions to conduct our research on public lands in Norway. The research was supported financially by the Academy of Finland (projects 111195, 129143 and 204190 to T. K. and 7650, 34509 and 48697 to K. R.), by the Turku University Foundation (grants to T. K. and K. R.), and by the Maj and Tor Nessling Foundation (grants to T. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tero Klemola.

Additional information

Communicated by Thomas S. Hoffmeister.

Electronic supplementary material

Below is the link to the electronic supplementary material.

442_2014_2984_MOESM1_ESM.docx

Online Resource 1 Map of northern Europe showing outbreak range of the autumnal and winter moth and main study locations of the moths in northern Fennoscandia (DOCX 124 kb)

442_2014_2984_MOESM2_ESM.docx

Online Resource 2 Likelihood-based model comparisons and parameter estimates of GLMMs on the survival, predation, and parasitism of autumnal moth eggs and pupae (DOCX 32 kb)

Online Resource 3 Supplementary graphs on egg and pupal parasitism (DOCX 59 kb)

442_2014_2984_MOESM4_ESM.docx

Online Resource 4 Information on parasitoids and potential predators of the pupae and eggs of autumnal and winter moths (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klemola, T., Andersson, T. & Ruohomäki, K. Delayed density-dependent parasitism of eggs and pupae as a contributor to the cyclic population dynamics of the autumnal moth. Oecologia 175, 1211–1225 (2014). https://doi.org/10.1007/s00442-014-2984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2984-9

Keywords

Navigation