Oecologia

, Volume 175, Issue 4, pp 1291–1300 | Cite as

Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers

  • Nina Farwig
  • Roland Brandl
  • Stefen Siemann
  • Franziska Wiener
  • Jörg Müller
Community ecology - Original research

Abstract

Environmental factors and biodiversity affect ecosystem processes. As environmental change modifies also biodiversity it is unclear whether direct effects of environmental factors on ecosystem processes are more important than indirect effects mediated by changes in biodiversity. High-quality resources like carrion occur as heterogeneous pulses of energy and nutrients. Consequently, the distribution of scavenging insects is related to resource availability. Therefore, carrion decomposition represents a suitable process from which to unravel direct effects of environmental change from indirect biodiversity-related effects on ecosystem processes. During three field seasons in 2010 we exposed traps baited with small-mammal carrion at 21 sites along a temperature gradient to explore the insect carrion fauna and decomposition rate in the Bohemian Forest, Germany. The abundance component of beetle and fly assemblages decreased with decreasing temperature. Independently, the composition component of both taxa changed with temperature and season. The change in the composition component of beetles depicted a loss of larger species at higher temperatures. Decomposition rate did not change directly along the temperature gradient but was directly influenced by season. The composition component of beetles, and to a small extent of flies, but not their abundance component, directly affected carrion decomposition. Consequently, lower decomposition rates at lower temperatures can be explained by the absence of larger beetle species. Thus, we predict that future environmental change will modify carrion fauna composition and thereby indirectly decomposition rate. Moreover, reorganizations of the insect carrion composition will directly translate into modified decomposition rates, with potential consequences for nutrient availability and carbon storage.

Keywords

BIOKLIM Bohemian forest Carcass Coleoptera Diptera Decay 

Supplementary material

442_2014_2974_MOESM1_ESM.docx (359 kb)
Supplementary material 1 (DOCX 438 kb)

References

  1. Assing V, Schülke M (2011) Freude–Harde–Lohse–Klausnitzer–Die Käfer Mitteleuropas. Band 4. Staphylinidae I. Zweite neubearbeitete Auflage, vol I-XII. Spektrum, Heidelberg, pp 1–560Google Scholar
  2. Bässler C, Förster B, Moning C, Müller J (2008) The BIOKLIM project: biodiversity research between climate change and wilding in a temperate montane forest—the conceptual framework. Waldökol Landschaftsforsch Natursch 7:21–33Google Scholar
  3. Bässler C, Müller J, Dziock F, Brandl R (2010) Microclimate and especially resource availability are more important than macroclimate for assemblages of wood-inhabiting fungi. J Ecol 98:822–832CrossRefGoogle Scholar
  4. Bates D, Bolker B, Maechler M, Walker S (2012) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-4Google Scholar
  5. Baz A, Cifrian B, Diaz-Aranda LM, Martin-Vega D (2007) The distribution of adult blow-flies (Diptera: Calliphoridae) along an altitudinal gradient in Central Spain. Ann Soc Entomol Fr 43:289–296CrossRefGoogle Scholar
  6. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, et al. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135PubMedCrossRefGoogle Scholar
  7. Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28CrossRefGoogle Scholar
  8. Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Aust J Zool 5:1–12CrossRefGoogle Scholar
  9. Brohmer P, Schäfer M, Ansorge H (2006) Fauna von Deutschland: ein Bestimmungsbuch unserer heimischen Tierwelt. Quelle & Meyer, WiebelsheimGoogle Scholar
  10. Bump JK, Webster CR, Vucetisch JA, Peterson RO, Shields JM, Powers MD (2009) Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceaous layers allowing trees a competitive advantage. Ecosystems 12:996–1007CrossRefGoogle Scholar
  11. Burkepile DE, Parker JD, Woodson CB, Mills HJ, Kubanek J, Sobecky PA, Hay ME (2006) Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87:2821–2831PubMedCrossRefGoogle Scholar
  12. Burnham K, Anderson DR (2002) Model selection and multi-model inference, 2nd edn. Springer, New YorkGoogle Scholar
  13. Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24PubMedCrossRefGoogle Scholar
  14. Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242PubMedCrossRefGoogle Scholar
  15. Chen I-C, Shiu H-J, Benedick S, Holloway JD, Chey VK, Barlow HS, Hill JK, Thomas CD (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc Natl Acad Sci USA 106:1479–1483PubMedCentralPubMedCrossRefGoogle Scholar
  16. Christensen RHB (2013) Ordinal: regression model for ordinal data. R package version 2013.9-30Google Scholar
  17. Collins M (1970) Studies on the decomposition of carrion and its relationship with its surrounding ecosystem. Dissertation. University of Reading, Reading, UKGoogle Scholar
  18. Danell K, Berteaux D, Braathen KA (2002) Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Arctic 55:389–392CrossRefGoogle Scholar
  19. De Jong GD, Chadwick JW (1999) Decomposition and arthropod succession on exposed rabbit carrion during summer at high altitudes in Colorado, USA. J Med Entomol 36:833–845PubMedGoogle Scholar
  20. De Jong GD, Hoback WW (2006) Effect of investigator disturbance in experimental forensic entomology: succession and community composition. Med Vet Entomol 29:248–258CrossRefGoogle Scholar
  21. Dekeirsschieter J, Verheggen FJ, Haubruge E, Brostaux Y (2011) Carrion beetles visiting pig carcasses during early spring in urban, forest and agricultural biotopes of Western Europe. J Insect Sci 11:1–13CrossRefGoogle Scholar
  22. DeVault TL, Brisbin IL Jr, Rhodes OE Jr (2004) Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can J Zool 82:502–509CrossRefGoogle Scholar
  23. DeVault TL, Olson ZH, Beasley JC, Rhodes OE Jr, et al. (2011) Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl Ecol 12:268–274CrossRefGoogle Scholar
  24. Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ 7:437–444CrossRefGoogle Scholar
  25. Farwig N, Bailey D, Bochud E, Herrmann JD, Kindler E, Reusser N, Schüepp C, Schmidt-Entling MH (2009) Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landsc Ecol 24:919–927CrossRefGoogle Scholar
  26. Fauth JE, Bernardo J, Camara M, Resetarits WJ Jr, Van Buskirk J, McCollum SA (1996) Simplifying the jargon of community ecology: a conceptual approach. Am Nat 147:282–286CrossRefGoogle Scholar
  27. Fiedler A, Hallbach M, Sinclair B, Benecke M (2008) What is the edge of a forest? A diversity analysis of adult Diptera found on decomposing piglets inside and on the edge of a Western German woodland inspired by a courtroom question. Entomol Heute 20:173–1191Google Scholar
  28. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246CrossRefGoogle Scholar
  29. Gehring CA, Wolf JE, Theimer TC (2002) Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in rain forest soils. Ecol Lett 5:540–548CrossRefGoogle Scholar
  30. Gessner MO, Svan CH, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwieler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380PubMedCrossRefGoogle Scholar
  31. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  32. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711PubMedCrossRefGoogle Scholar
  33. Harde KW, Severa F (2009) Der Kosmos Käferführer–Die Käfer Mitteleuropas. Franckh-Kosmos, StuttgartGoogle Scholar
  34. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Syst 36:191–218CrossRefGoogle Scholar
  35. Haupt J, Haupt H (1998) Fliegen und Mücken, Beobachtungen, Lebensweisen. Weltbild, AugsburgGoogle Scholar
  36. Hillebrand H, Matthiessen B (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol Lett 12:1405–1419PubMedCrossRefGoogle Scholar
  37. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513PubMedCrossRefGoogle Scholar
  38. Hooper D, Chapin F III, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge D, Loreau M, Naeem S, Schmid B, Setälä H, Symstad A, Vandermeer J, Wardle D (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  39. Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci USA 110:11911–11916PubMedCentralPubMedCrossRefGoogle Scholar
  40. Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9:465–470PubMedCrossRefGoogle Scholar
  41. Klausnitzer B, Hannemann HJ, Senglaub K (2005) Exkursionsfauna von Deutschland, Wirbellose : Insekten. Spektrum, HeidelbergGoogle Scholar
  42. Kneidel KA (1984) Competition and disturbance in communities of carrion-breeding Diptera. J Animal Ecol 53:849–865CrossRefGoogle Scholar
  43. Koch K (1989–1992) Die Käfer Mitteleuropas, Ökologie. Band 1-3. Goecke & Evers, KrefeldGoogle Scholar
  44. Londo G (1976) The decimal scale for releves of permanent quadrats. Vegetatio 33:61–64CrossRefGoogle Scholar
  45. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefGoogle Scholar
  46. Martin-Piera F, Lobo JM (1993) Altitudinal distribution patterns of copro-necrophageous carabaeoidea in Veracruz, Mexico. Coleopt Bull 47:321–334Google Scholar
  47. Matzuszewski S, Bajerlein D, Konwerski S, Szpila K (2010) Insect succession and carrion decomposition in selected forests of Central Europe. Part 2. Composition and residency patterns of carrion fauna. Forensic Sci Int 195:42–51CrossRefGoogle Scholar
  48. Menge BA, Sutherland JP (1987) Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am Nat 130:730–757CrossRefGoogle Scholar
  49. Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Collins Johnson N, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600CrossRefGoogle Scholar
  50. Müller J, Brandl R (2009) Assessing biodiversity by remote sensing and ground survey in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46:897–905CrossRefGoogle Scholar
  51. Müller J, Bässler C, Strätz C, Klöcking B, Brandl R (2009) Molluscs and climate warming in a low mountain range national park. Malacologia 51:133–153CrossRefGoogle Scholar
  52. Ostfeld RS, Keesing F (2000) Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol Evol 15:232–237PubMedCrossRefGoogle Scholar
  53. Paczkowski S, Maibaum F, Paczkowska M, Schütz S (2012) Decaying mouse volatiles perceived by Calliphora vicina Rob.-Desv. J Forensic Sci 57:1497–1506PubMedCrossRefGoogle Scholar
  54. Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub steppe ecosystem. Ecol Monogr 79:637–661CrossRefGoogle Scholar
  55. Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602CrossRefGoogle Scholar
  56. R Development Core Team (2013) R: a language and environment for statistical computingGoogle Scholar
  57. Reiter E (1908–1916) Fauna Germanica—die Käfer des deutschen Reichs. Lutz, StuttgartGoogle Scholar
  58. Rosenlew H, Roslin T (2008) Habitat fragmentation and the functional efficiency of temperate dung beetles. Oikos 117:1659–1666CrossRefGoogle Scholar
  59. Selva N, Jedrzejewska B, Jedrzejewski W, Wajrak A (2005) Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can J Zool 83:1590–1601CrossRefGoogle Scholar
  60. Sharanowski BJ, Walker EG, Anderson GS (2008) Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. Forensic Sci Int 79:219–240CrossRefGoogle Scholar
  61. Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368PubMedCrossRefGoogle Scholar
  62. Srivastava DS, Cardinale BJ, Downing AL, Duffy JE, Jouseau C, Sankaran M, Wright JP (2009) Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90:1073–1083PubMedCrossRefGoogle Scholar
  63. Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239CrossRefGoogle Scholar
  64. Voss SC, Spafford H, Dadour IR (2009) Annual and seasonal patterns of insect succession on decomposing remains at two locations in Western Australia. Forensic Sci Int 193:26–36PubMedCrossRefGoogle Scholar
  65. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633PubMedCrossRefGoogle Scholar
  66. Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135PubMedCrossRefGoogle Scholar
  67. Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306:1565–1567PubMedCrossRefGoogle Scholar
  68. Yang LH (2008) Pulses of dead periodical cicadas increase herbivory of American bellflowers. Ecology 89:1497–1502PubMedCrossRefGoogle Scholar
  69. Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wrigth AN, Spence KE (2010) A meta-analysis of resource pulse-consumer interactions. Ecol Monogr 80:125–151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nina Farwig
    • 1
  • Roland Brandl
    • 2
  • Stefen Siemann
    • 1
  • Franziska Wiener
    • 1
  • Jörg Müller
    • 3
    • 4
  1. 1.Department of Ecology - Conservation Ecology, Faculty of BiologyPhilipps-Universität MarburgMarburgGermany
  2. 2.Department of Ecology - Animal Ecology, Faculty of BiologyPhilipps-Universität MarburgMarburgGermany
  3. 3.Bavarian Forest National ParkGrafenauGermany
  4. 4.Terrestrial Ecology, Department of Ecology and Ecosystem ManagementTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations