Skip to main content

Advertisement

Log in

Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Environmental factors and biodiversity affect ecosystem processes. As environmental change modifies also biodiversity it is unclear whether direct effects of environmental factors on ecosystem processes are more important than indirect effects mediated by changes in biodiversity. High-quality resources like carrion occur as heterogeneous pulses of energy and nutrients. Consequently, the distribution of scavenging insects is related to resource availability. Therefore, carrion decomposition represents a suitable process from which to unravel direct effects of environmental change from indirect biodiversity-related effects on ecosystem processes. During three field seasons in 2010 we exposed traps baited with small-mammal carrion at 21 sites along a temperature gradient to explore the insect carrion fauna and decomposition rate in the Bohemian Forest, Germany. The abundance component of beetle and fly assemblages decreased with decreasing temperature. Independently, the composition component of both taxa changed with temperature and season. The change in the composition component of beetles depicted a loss of larger species at higher temperatures. Decomposition rate did not change directly along the temperature gradient but was directly influenced by season. The composition component of beetles, and to a small extent of flies, but not their abundance component, directly affected carrion decomposition. Consequently, lower decomposition rates at lower temperatures can be explained by the absence of larger beetle species. Thus, we predict that future environmental change will modify carrion fauna composition and thereby indirectly decomposition rate. Moreover, reorganizations of the insect carrion composition will directly translate into modified decomposition rates, with potential consequences for nutrient availability and carbon storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Assing V, Schülke M (2011) Freude–Harde–Lohse–Klausnitzer–Die Käfer Mitteleuropas. Band 4. Staphylinidae I. Zweite neubearbeitete Auflage, vol I-XII. Spektrum, Heidelberg, pp 1–560

    Google Scholar 

  • Bässler C, Förster B, Moning C, Müller J (2008) The BIOKLIM project: biodiversity research between climate change and wilding in a temperate montane forest—the conceptual framework. Waldökol Landschaftsforsch Natursch 7:21–33

    Google Scholar 

  • Bässler C, Müller J, Dziock F, Brandl R (2010) Microclimate and especially resource availability are more important than macroclimate for assemblages of wood-inhabiting fungi. J Ecol 98:822–832

    Article  Google Scholar 

  • Bates D, Bolker B, Maechler M, Walker S (2012) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-4

  • Baz A, Cifrian B, Diaz-Aranda LM, Martin-Vega D (2007) The distribution of adult blow-flies (Diptera: Calliphoridae) along an altitudinal gradient in Central Spain. Ann Soc Entomol Fr 43:289–296

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, et al. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28

    Article  Google Scholar 

  • Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Aust J Zool 5:1–12

    Article  Google Scholar 

  • Brohmer P, Schäfer M, Ansorge H (2006) Fauna von Deutschland: ein Bestimmungsbuch unserer heimischen Tierwelt. Quelle & Meyer, Wiebelsheim

    Google Scholar 

  • Bump JK, Webster CR, Vucetisch JA, Peterson RO, Shields JM, Powers MD (2009) Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceaous layers allowing trees a competitive advantage. Ecosystems 12:996–1007

    Article  Google Scholar 

  • Burkepile DE, Parker JD, Woodson CB, Mills HJ, Kubanek J, Sobecky PA, Hay ME (2006) Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87:2821–2831

    Article  PubMed  Google Scholar 

  • Burnham K, Anderson DR (2002) Model selection and multi-model inference, 2nd edn. Springer, New York

    Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  PubMed  Google Scholar 

  • Chen I-C, Shiu H-J, Benedick S, Holloway JD, Chey VK, Barlow HS, Hill JK, Thomas CD (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc Natl Acad Sci USA 106:1479–1483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christensen RHB (2013) Ordinal: regression model for ordinal data. R package version 2013.9-30

  • Collins M (1970) Studies on the decomposition of carrion and its relationship with its surrounding ecosystem. Dissertation. University of Reading, Reading, UK

  • Danell K, Berteaux D, Braathen KA (2002) Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Arctic 55:389–392

    Article  Google Scholar 

  • De Jong GD, Chadwick JW (1999) Decomposition and arthropod succession on exposed rabbit carrion during summer at high altitudes in Colorado, USA. J Med Entomol 36:833–845

    CAS  PubMed  Google Scholar 

  • De Jong GD, Hoback WW (2006) Effect of investigator disturbance in experimental forensic entomology: succession and community composition. Med Vet Entomol 29:248–258

    Article  Google Scholar 

  • Dekeirsschieter J, Verheggen FJ, Haubruge E, Brostaux Y (2011) Carrion beetles visiting pig carcasses during early spring in urban, forest and agricultural biotopes of Western Europe. J Insect Sci 11:1–13

    Article  Google Scholar 

  • DeVault TL, Brisbin IL Jr, Rhodes OE Jr (2004) Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can J Zool 82:502–509

    Article  Google Scholar 

  • DeVault TL, Olson ZH, Beasley JC, Rhodes OE Jr, et al. (2011) Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl Ecol 12:268–274

    Article  Google Scholar 

  • Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ 7:437–444

    Article  Google Scholar 

  • Farwig N, Bailey D, Bochud E, Herrmann JD, Kindler E, Reusser N, Schüepp C, Schmidt-Entling MH (2009) Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landsc Ecol 24:919–927

    Article  Google Scholar 

  • Fauth JE, Bernardo J, Camara M, Resetarits WJ Jr, Van Buskirk J, McCollum SA (1996) Simplifying the jargon of community ecology: a conceptual approach. Am Nat 147:282–286

    Article  Google Scholar 

  • Fiedler A, Hallbach M, Sinclair B, Benecke M (2008) What is the edge of a forest? A diversity analysis of adult Diptera found on decomposing piglets inside and on the edge of a Western German woodland inspired by a courtroom question. Entomol Heute 20:173–1191

    Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gehring CA, Wolf JE, Theimer TC (2002) Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in rain forest soils. Ecol Lett 5:540–548

    Article  Google Scholar 

  • Gessner MO, Svan CH, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwieler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  PubMed  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  CAS  PubMed  Google Scholar 

  • Harde KW, Severa F (2009) Der Kosmos Käferführer–Die Käfer Mitteleuropas. Franckh-Kosmos, Stuttgart

    Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Syst 36:191–218

    Article  Google Scholar 

  • Haupt J, Haupt H (1998) Fliegen und Mücken, Beobachtungen, Lebensweisen. Weltbild, Augsburg

    Google Scholar 

  • Hillebrand H, Matthiessen B (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol Lett 12:1405–1419

    Article  PubMed  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Hooper D, Chapin F III, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge D, Loreau M, Naeem S, Schmid B, Setälä H, Symstad A, Vandermeer J, Wardle D (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci USA 110:11911–11916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9:465–470

    Article  CAS  PubMed  Google Scholar 

  • Klausnitzer B, Hannemann HJ, Senglaub K (2005) Exkursionsfauna von Deutschland, Wirbellose : Insekten. Spektrum, Heidelberg

    Google Scholar 

  • Kneidel KA (1984) Competition and disturbance in communities of carrion-breeding Diptera. J Animal Ecol 53:849–865

    Article  Google Scholar 

  • Koch K (1989–1992) Die Käfer Mitteleuropas, Ökologie. Band 1-3. Goecke & Evers, Krefeld

  • Londo G (1976) The decimal scale for releves of permanent quadrats. Vegetatio 33:61–64

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  CAS  PubMed  Google Scholar 

  • Martin-Piera F, Lobo JM (1993) Altitudinal distribution patterns of copro-necrophageous carabaeoidea in Veracruz, Mexico. Coleopt Bull 47:321–334

    Google Scholar 

  • Matzuszewski S, Bajerlein D, Konwerski S, Szpila K (2010) Insect succession and carrion decomposition in selected forests of Central Europe. Part 2. Composition and residency patterns of carrion fauna. Forensic Sci Int 195:42–51

    Article  Google Scholar 

  • Menge BA, Sutherland JP (1987) Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am Nat 130:730–757

    Article  Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Collins Johnson N, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Article  Google Scholar 

  • Müller J, Brandl R (2009) Assessing biodiversity by remote sensing and ground survey in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46:897–905

    Article  Google Scholar 

  • Müller J, Bässler C, Strätz C, Klöcking B, Brandl R (2009) Molluscs and climate warming in a low mountain range national park. Malacologia 51:133–153

    Article  Google Scholar 

  • Ostfeld RS, Keesing F (2000) Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol Evol 15:232–237

    Article  PubMed  Google Scholar 

  • Paczkowski S, Maibaum F, Paczkowska M, Schütz S (2012) Decaying mouse volatiles perceived by Calliphora vicina Rob.-Desv. J Forensic Sci 57:1497–1506

    Article  PubMed  Google Scholar 

  • Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub steppe ecosystem. Ecol Monogr 79:637–661

    Article  Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing

  • Reiter E (1908–1916) Fauna Germanica—die Käfer des deutschen Reichs. Lutz, Stuttgart

  • Rosenlew H, Roslin T (2008) Habitat fragmentation and the functional efficiency of temperate dung beetles. Oikos 117:1659–1666

    Article  Google Scholar 

  • Selva N, Jedrzejewska B, Jedrzejewski W, Wajrak A (2005) Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can J Zool 83:1590–1601

    Article  Google Scholar 

  • Sharanowski BJ, Walker EG, Anderson GS (2008) Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. Forensic Sci Int 79:219–240

    Article  Google Scholar 

  • Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368

    Article  PubMed  Google Scholar 

  • Srivastava DS, Cardinale BJ, Downing AL, Duffy JE, Jouseau C, Sankaran M, Wright JP (2009) Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90:1073–1083

    Article  PubMed  Google Scholar 

  • Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239

    Article  Google Scholar 

  • Voss SC, Spafford H, Dadour IR (2009) Annual and seasonal patterns of insect succession on decomposing remains at two locations in Western Australia. Forensic Sci Int 193:26–36

    Article  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135

    Article  PubMed  Google Scholar 

  • Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306:1565–1567

    Article  CAS  PubMed  Google Scholar 

  • Yang LH (2008) Pulses of dead periodical cicadas increase herbivory of American bellflowers. Ecology 89:1497–1502

    Article  PubMed  Google Scholar 

  • Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wrigth AN, Spence KE (2010) A meta-analysis of resource pulse-consumer interactions. Ecol Monogr 80:125–151

    Article  Google Scholar 

Download references

Acknowledgments

The authors were supported by the Robert Bosch Stiftung and the Bavarian Forest National Park. We thank two anonymous reviewers for their constructive comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Farwig.

Additional information

Communicated by Janne Sundell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farwig, N., Brandl, R., Siemann, S. et al. Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia 175, 1291–1300 (2014). https://doi.org/10.1007/s00442-014-2974-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2974-y

Keywords

Navigation