Skip to main content

Advertisement

Log in

Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu UGP, McManus C, Santos SA (2010) Cattle ranching, conservation and transhumance in the Brazilian Pantanal. Pastoralism 1:99–114

    Google Scholar 

  • Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239

    Article  Google Scholar 

  • Asner GP, Levick SR, Kennedy-Bowdoin T, Knapp DE, Emerson R, Jacobson J, Colgan MS, Martin RE (2009) Large-scale impacts of herbivores on the structural diversity of African savannas. Proc Natl Acad Sci USA 106:4947–4952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Assine ML, Soares PC (2004) Quaternary of the Pantanal, west-central Brazil. Quatern Int 114:23–34

    Article  Google Scholar 

  • Barber MJ (2007) Modularity and community detection in bipartite networks. Phys Rev E 76:e0066102

    Article  Google Scholar 

  • Barnosky AD, Lindsey EL (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quatern Int 217:10–29

    Article  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant—animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brodie JH, Helmy OE, Brockelman WY, Maron JL (2009) Functional differences within a guild of tropical mammalian frugivores. Ecology 90:688–698

    Article  PubMed  Google Scholar 

  • Bueno RS, Guevara R, Ribeiro MC, Culot L, Bufalo FS, Galetti M (2013) Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. PLoS One 8:e56252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bush MB, Gosling WD, Colinvaux PA (2011) Climate change in the lowlands of the Amazon Basin. In: Bush MB, Flenley JR, Gosling WD (eds) Tropical rainforest responses to climate change. Springer, Berlin Heidelberg New York, pp 61–84

    Chapter  Google Scholar 

  • Campos-Arceiz A, Traeholt C, Jaffar R, Santamaria L, Corlett RT (2012) Asian tapirs are no elephants when it comes to seed dispersal. Biotropica 44:220–227

    Article  Google Scholar 

  • Corlett RT (2013) The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol Conserv 163:13–21

    Article  Google Scholar 

  • Donatti CI, Galetti M, Pizo MA, Guimarães PR, Jordano P (2007) Living in the land of ghosts: fruit traits and the importance of large mammals as seed dispersers in the Pantanal, Brazil. In: Dennis AJ, Schupp EW, Green RJ, Westcott DA (eds) Seed dispersal: its theory and application in a changing world. CABI, Wallingford, pp 104–123

    Google Scholar 

  • Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781

    Article  PubMed  Google Scholar 

  • Donlan CJ et al (2006) Pleistocene rewilding: an optimistic agenda for twenty-first century conservation. Am Nat 168:660–681

    Article  Google Scholar 

  • Doughty CE, Wolf A, Malhi Y (2013) The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat Geosci 6:761–764

    Article  CAS  Google Scholar 

  • Dunne JA (2006) The network structure of food webs. In: Pascual M, Dunne JA (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, New York, pp 27–86

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Effiom EO, Nuñez-Iturri G, Smith HG, Ottosson U, Olsson O (2013) Bushmeat hunting changes regeneration of African rainforests. Proc R Soc B 280:1759

    Article  Google Scholar 

  • Fortuna MA et al (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? J Anim Ecol 79:811–817

    PubMed  Google Scholar 

  • Fragoso JMV, Silvius KM, Correa JA (2003) Long-distance seed dispersal by tapirs increases seed survival and aggregates tropical trees. Ecology 84:1998–2006

    Article  Google Scholar 

  • Galetti M (2004) Parks of the Pleistocene: recreating the Cerrado and the Pantanal with megafauna. Nat Conserv 2:93–100

    Google Scholar 

  • Galetti M, Dirzo R (2013) Ecological and evolutionary consequences of living in a defaunated world. Biol Conserv 163:1–6

    Article  Google Scholar 

  • Galetti M et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Gill JL (2013) Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytol 201:1163–1169

    Article  PubMed  Google Scholar 

  • Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS (2009) Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Griffiths CJ, Hansen DM, Jones CG, Zuel N, Harris S (2011) Resurrecting extinct interactions with extant substitutes. Curr Biol 21:762–765

    Article  CAS  PubMed  Google Scholar 

  • Guimarães PR, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS One 3:e1745

    Article  PubMed Central  PubMed  Google Scholar 

  • Guimarães PR, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885

    Article  PubMed  Google Scholar 

  • Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

    Article  PubMed Central  PubMed  Google Scholar 

  • Guix JC (2009) Amazonian forests need indians and caboclos. ORSIS Org Sist 24:33–40

    Google Scholar 

  • Hansen DM, Galetti M (2009) The forgotten megafauna. Science 324:42–43

    Article  CAS  PubMed  Google Scholar 

  • Jansen PA, Hirsch BT, Emsens WJ, Zamora-Gutierrez V, Wikelski M, Kays R (2012) Thieving rodents as substitute dispersers of megafaunal seeds. Proc Natl Acad Sci USA 109:12610–12615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janzen DH (1984) Dispersal of small seeds by big herbivores—foliage is the fruit. Am Nat 123:338–353

    Article  Google Scholar 

  • Janzen DH (1986) Chihuahuan desert nopaleras: defaunated big mammal vegetation. Annu Rev Ecol Syst 17:595–636

    Article  Google Scholar 

  • Janzen DH, Martin PS (1982) Neotropical anachronisms—the fruits the gomphotheres ate. Science 215:19–27

    Article  CAS  PubMed  Google Scholar 

  • Johnson CN (2009) Ecological consequences of late Quaternary extinctions of megafauna. Proc R Soc B 276:2509–2519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koch PL, Barnosky AD (2006) Late Quaternary extinctions: state of the debate. Annu Rev Ecol Evol Syst 37:215–250

    Article  Google Scholar 

  • Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW (2003) Compartments revealed in food-web structure. Nature 426:282–285

    Article  CAS  PubMed  Google Scholar 

  • MacFadden BJ (2000) Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annu Rev Ecol Syst 31:33–59

    Article  Google Scholar 

  • MacFadden BJ, Shockey BJ (1997) Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23:77–100

    Google Scholar 

  • Marquitti FMD, Guimarães PR, Pires MM, Bittencourt LF (2014) MODULAR: software for the autonomous computation of modularity in large network sets. Ecography 37:221–224

    Article  Google Scholar 

  • Martin PS, Klein RG (1984) Quaternary extinctions: a prehistoric revolution. University of Arizona Press, Tucson

    Google Scholar 

  • May RM (1972) Will a large complex system be stable? Nature 238:413–414

    Article  CAS  PubMed  Google Scholar 

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc B 271:2605–2611

    Article  PubMed Central  PubMed  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285

    Article  PubMed  Google Scholar 

  • Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecology 89:1573–1582

    Article  PubMed  Google Scholar 

  • Owen-Smith N (1987) Pleistocene extinctions—the pivotal role of megaherbivores. Paleobiology 13:351–362

    Google Scholar 

  • Petanidou T, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett 11:564–575

    Article  PubMed  Google Scholar 

  • Pimm SL (2002) Food webs. University of Chicago Press, Chicago

    Google Scholar 

  • Pires MM, Guimarães PR, Araújo MS, Giaretta AA, Costa JCL, dos Reis SF (2011) The nested assembly of individual-resource networks. J Anim Ecol 80:896–903

    Article  CAS  PubMed  Google Scholar 

  • Pott A, Oliveira AKM, Damasceno GA, Silva JSV (2011) Plant diversity of the Pantanal wetland. Br J Biol 71:265–273

    CAS  Google Scholar 

  • Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928

    Article  CAS  PubMed  Google Scholar 

  • Roosevelt AC et al (1996) Paleoindian cave dwellers in the Amazon: the peopling of the Americas. Science 272:373–384

    Article  CAS  Google Scholar 

  • Rule S, Brook BW, Haberle SG, Turney CSM, Kershaw AP, Johnson CN (2012) The Aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335:1483–1486

    Article  CAS  PubMed  Google Scholar 

  • Salles LO, Cartelle C, Guedes PG, Boggiani PC, Janoo A, Russo CAM (2006) Quaternary mammals from Serra da Bodoquena, Mato Grosso do Sul, Brazil. Bol Mus Nacl Rio de Janeiro 521:1–12

    Google Scholar 

  • Scheffler SM, Martins GR, Kashimoto EM, de Oliveira AM (2010) Revisão sobre a paleontologia no estado do Mato Grosso do Sul: fósseis e afloramentos descritos. Braz Geogr J Geosci Humanit Res Medium 1:65–99

    Google Scholar 

  • Scoles R, Gribel R (2011) Population structure of Brazil nut (Bertholletia excelsa, Lecythidaceae) stands in two areas with different occupation histories in the Brazilian Amazon. Hum Ecol 39:455–464

    Article  Google Scholar 

  • Smith FA et al (2003) Body mass of late Quaternary mammals. Ecology 84:3403

    Article  Google Scholar 

  • Terborgh J, Estes JA (2010) Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington, DC

    Google Scholar 

  • Thébault E (2013) Identifying compartments in presence-absence matrices and bipartite networks: insights into modularity measures. J Biogeogr 40:759–768

    Article  Google Scholar 

  • Vidal MM, Pires MM, Guimarães PR (2013) Large vertebrates as the missing components of seed-dispersal networks. Biol Conserv 163:42–48

    Article  Google Scholar 

  • Vilà M et al (2009) Invasive plant integration into native plant-pollinator networks across Europe. Proc R Soc B 276:3887–3893

    Article  PubMed Central  PubMed  Google Scholar 

  • Whitney BS et al (2011) A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeogr Palaeoclimatol Palaeoecol 307:177–192

    Article  Google Scholar 

  • Wright SJ et al (2007) The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39:289–291

    Article  Google Scholar 

  • Zaya DN, Howe HF (2009) The anomalous Kentucky coffeetree: megafaunal fruit sinking to extinction? Oecologia 161:221–226

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank D. M. Hansen, P. Jordano and two anonymous reviewers for critical suggestions regards the manuscript. M. M. P., M. G. and P. R. G. were supported by São Paulo Research Foundation (FAPESP; grant nos. 2009/54422-8, 2004/00810-3, 2008/10154-7, and 2009/54567-6). C. I. D. was supported by Stanford University. M. G., P. R. G. and M. A. P. receive research grants from CNPq. We also thank the Earthwatch Institute and Conservation International for financial support and Conservation International, Lucas Leuzinger and Marina Schweizer for their permission to work on their properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias M. Pires.

Additional information

Communicated by Candace Galen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, M.M., Galetti, M., Donatti, C.I. et al. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia 175, 1247–1256 (2014). https://doi.org/10.1007/s00442-014-2971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2971-1

Keywords

Navigation