, Volume 175, Issue 4, pp 1247–1256 | Cite as

Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction

  • Mathias M. Pires
  • Mauro Galetti
  • Camila I. Donatti
  • Marco A. Pizo
  • Rodolfo Dirzo
  • Paulo R. GuimarãesJr.
Plant-microbe-animal interactions - Original research


The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.


Ecological networks Frugivory Modularity Mutualisms Pantanal Rewilding 



We thank D. M. Hansen, P. Jordano and two anonymous reviewers for critical suggestions regards the manuscript. M. M. P., M. G. and P. R. G. were supported by São Paulo Research Foundation (FAPESP; grant nos. 2009/54422-8, 2004/00810-3, 2008/10154-7, and 2009/54567-6). C. I. D. was supported by Stanford University. M. G., P. R. G. and M. A. P. receive research grants from CNPq. We also thank the Earthwatch Institute and Conservation International for financial support and Conservation International, Lucas Leuzinger and Marina Schweizer for their permission to work on their properties.

Supplementary material

442_2014_2971_MOESM1_ESM.pdf (89 kb)
Supplementary material 1 (PDF 89 kb)
442_2014_2971_MOESM2_ESM.pdf (74 kb)
Supplementary material 2 (PDF 73 kb)
442_2014_2971_MOESM3_ESM.pdf (108 kb)
Supplementary material 3 (PDF 108 kb)
442_2014_2971_MOESM4_ESM.pdf (83 kb)
Supplementary material 4 (PDF 82 kb)
442_2014_2971_MOESM5_ESM.pdf (121 kb)
Supplementary material 5 (PDF 120 kb)


  1. Abreu UGP, McManus C, Santos SA (2010) Cattle ranching, conservation and transhumance in the Brazilian Pantanal. Pastoralism 1:99–114Google Scholar
  2. Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239CrossRefGoogle Scholar
  3. Asner GP, Levick SR, Kennedy-Bowdoin T, Knapp DE, Emerson R, Jacobson J, Colgan MS, Martin RE (2009) Large-scale impacts of herbivores on the structural diversity of African savannas. Proc Natl Acad Sci USA 106:4947–4952PubMedCentralPubMedCrossRefGoogle Scholar
  4. Assine ML, Soares PC (2004) Quaternary of the Pantanal, west-central Brazil. Quatern Int 114:23–34CrossRefGoogle Scholar
  5. Barber MJ (2007) Modularity and community detection in bipartite networks. Phys Rev E 76:e0066102CrossRefGoogle Scholar
  6. Barnosky AD, Lindsey EL (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quatern Int 217:10–29CrossRefGoogle Scholar
  7. Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593CrossRefGoogle Scholar
  8. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant—animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387PubMedCentralPubMedCrossRefGoogle Scholar
  9. Brodie JH, Helmy OE, Brockelman WY, Maron JL (2009) Functional differences within a guild of tropical mammalian frugivores. Ecology 90:688–698PubMedCrossRefGoogle Scholar
  10. Bueno RS, Guevara R, Ribeiro MC, Culot L, Bufalo FS, Galetti M (2013) Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. PLoS One 8:e56252PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bush MB, Gosling WD, Colinvaux PA (2011) Climate change in the lowlands of the Amazon Basin. In: Bush MB, Flenley JR, Gosling WD (eds) Tropical rainforest responses to climate change. Springer, Berlin Heidelberg New York, pp 61–84CrossRefGoogle Scholar
  12. Campos-Arceiz A, Traeholt C, Jaffar R, Santamaria L, Corlett RT (2012) Asian tapirs are no elephants when it comes to seed dispersal. Biotropica 44:220–227CrossRefGoogle Scholar
  13. Corlett RT (2013) The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biol Conserv 163:13–21CrossRefGoogle Scholar
  14. Donatti CI, Galetti M, Pizo MA, Guimarães PR, Jordano P (2007) Living in the land of ghosts: fruit traits and the importance of large mammals as seed dispersers in the Pantanal, Brazil. In: Dennis AJ, Schupp EW, Green RJ, Westcott DA (eds) Seed dispersal: its theory and application in a changing world. CABI, Wallingford, pp 104–123Google Scholar
  15. Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781PubMedCrossRefGoogle Scholar
  16. Donlan CJ et al (2006) Pleistocene rewilding: an optimistic agenda for twenty-first century conservation. Am Nat 168:660–681CrossRefGoogle Scholar
  17. Doughty CE, Wolf A, Malhi Y (2013) The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat Geosci 6:761–764CrossRefGoogle Scholar
  18. Dunne JA (2006) The network structure of food webs. In: Pascual M, Dunne JA (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, New York, pp 27–86Google Scholar
  19. Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567CrossRefGoogle Scholar
  20. Effiom EO, Nuñez-Iturri G, Smith HG, Ottosson U, Olsson O (2013) Bushmeat hunting changes regeneration of African rainforests. Proc R Soc B 280:1759CrossRefGoogle Scholar
  21. Fortuna MA et al (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? J Anim Ecol 79:811–817PubMedGoogle Scholar
  22. Fragoso JMV, Silvius KM, Correa JA (2003) Long-distance seed dispersal by tapirs increases seed survival and aggregates tropical trees. Ecology 84:1998–2006CrossRefGoogle Scholar
  23. Galetti M (2004) Parks of the Pleistocene: recreating the Cerrado and the Pantanal with megafauna. Nat Conserv 2:93–100Google Scholar
  24. Galetti M, Dirzo R (2013) Ecological and evolutionary consequences of living in a defaunated world. Biol Conserv 163:1–6CrossRefGoogle Scholar
  25. Galetti M et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090PubMedCrossRefGoogle Scholar
  26. Gill JL (2013) Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytol 201:1163–1169PubMedCrossRefGoogle Scholar
  27. Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS (2009) Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:1100–1103PubMedCrossRefGoogle Scholar
  28. Griffiths CJ, Hansen DM, Jones CG, Zuel N, Harris S (2011) Resurrecting extinct interactions with extant substitutes. Curr Biol 21:762–765PubMedCrossRefGoogle Scholar
  29. Guimarães PR, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS One 3:e1745PubMedCentralPubMedCrossRefGoogle Scholar
  30. Guimarães PR, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885PubMedCrossRefGoogle Scholar
  31. Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900PubMedCentralPubMedCrossRefGoogle Scholar
  32. Guix JC (2009) Amazonian forests need indians and caboclos. ORSIS Org Sist 24:33–40Google Scholar
  33. Hansen DM, Galetti M (2009) The forgotten megafauna. Science 324:42–43PubMedCrossRefGoogle Scholar
  34. Jansen PA, Hirsch BT, Emsens WJ, Zamora-Gutierrez V, Wikelski M, Kays R (2012) Thieving rodents as substitute dispersers of megafaunal seeds. Proc Natl Acad Sci USA 109:12610–12615PubMedCentralPubMedCrossRefGoogle Scholar
  35. Janzen DH (1984) Dispersal of small seeds by big herbivores—foliage is the fruit. Am Nat 123:338–353CrossRefGoogle Scholar
  36. Janzen DH (1986) Chihuahuan desert nopaleras: defaunated big mammal vegetation. Annu Rev Ecol Syst 17:595–636CrossRefGoogle Scholar
  37. Janzen DH, Martin PS (1982) Neotropical anachronisms—the fruits the gomphotheres ate. Science 215:19–27PubMedCrossRefGoogle Scholar
  38. Johnson CN (2009) Ecological consequences of late Quaternary extinctions of megafauna. Proc R Soc B 276:2509–2519PubMedCentralPubMedCrossRefGoogle Scholar
  39. Koch PL, Barnosky AD (2006) Late Quaternary extinctions: state of the debate. Annu Rev Ecol Evol Syst 37:215–250CrossRefGoogle Scholar
  40. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW (2003) Compartments revealed in food-web structure. Nature 426:282–285PubMedCrossRefGoogle Scholar
  41. MacFadden BJ (2000) Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annu Rev Ecol Syst 31:33–59CrossRefGoogle Scholar
  42. MacFadden BJ, Shockey BJ (1997) Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23:77–100Google Scholar
  43. Marquitti FMD, Guimarães PR, Pires MM, Bittencourt LF (2014) MODULAR: software for the autonomous computation of modularity in large network sets. Ecography 37:221–224CrossRefGoogle Scholar
  44. Martin PS, Klein RG (1984) Quaternary extinctions: a prehistoric revolution. University of Arizona Press, TucsonGoogle Scholar
  45. May RM (1972) Will a large complex system be stable? Nature 238:413–414PubMedCrossRefGoogle Scholar
  46. Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc B 271:2605–2611PubMedCentralPubMedCrossRefGoogle Scholar
  47. Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285PubMedCrossRefGoogle Scholar
  48. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896PubMedCentralPubMedCrossRefGoogle Scholar
  49. Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecology 89:1573–1582PubMedCrossRefGoogle Scholar
  50. Owen-Smith N (1987) Pleistocene extinctions—the pivotal role of megaherbivores. Paleobiology 13:351–362Google Scholar
  51. Petanidou T, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett 11:564–575PubMedCrossRefGoogle Scholar
  52. Pimm SL (2002) Food webs. University of Chicago Press, ChicagoGoogle Scholar
  53. Pires MM, Guimarães PR, Araújo MS, Giaretta AA, Costa JCL, dos Reis SF (2011) The nested assembly of individual-resource networks. J Anim Ecol 80:896–903PubMedCrossRefGoogle Scholar
  54. Pott A, Oliveira AKM, Damasceno GA, Silva JSV (2011) Plant diversity of the Pantanal wetland. Br J Biol 71:265–273Google Scholar
  55. Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928PubMedCrossRefGoogle Scholar
  56. Roosevelt AC et al (1996) Paleoindian cave dwellers in the Amazon: the peopling of the Americas. Science 272:373–384CrossRefGoogle Scholar
  57. Rule S, Brook BW, Haberle SG, Turney CSM, Kershaw AP, Johnson CN (2012) The Aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335:1483–1486PubMedCrossRefGoogle Scholar
  58. Salles LO, Cartelle C, Guedes PG, Boggiani PC, Janoo A, Russo CAM (2006) Quaternary mammals from Serra da Bodoquena, Mato Grosso do Sul, Brazil. Bol Mus Nacl Rio de Janeiro 521:1–12Google Scholar
  59. Scheffler SM, Martins GR, Kashimoto EM, de Oliveira AM (2010) Revisão sobre a paleontologia no estado do Mato Grosso do Sul: fósseis e afloramentos descritos. Braz Geogr J Geosci Humanit Res Medium 1:65–99Google Scholar
  60. Scoles R, Gribel R (2011) Population structure of Brazil nut (Bertholletia excelsa, Lecythidaceae) stands in two areas with different occupation histories in the Brazilian Amazon. Hum Ecol 39:455–464CrossRefGoogle Scholar
  61. Smith FA et al (2003) Body mass of late Quaternary mammals. Ecology 84:3403CrossRefGoogle Scholar
  62. Terborgh J, Estes JA (2010) Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington, DCGoogle Scholar
  63. Thébault E (2013) Identifying compartments in presence-absence matrices and bipartite networks: insights into modularity measures. J Biogeogr 40:759–768CrossRefGoogle Scholar
  64. Vidal MM, Pires MM, Guimarães PR (2013) Large vertebrates as the missing components of seed-dispersal networks. Biol Conserv 163:42–48CrossRefGoogle Scholar
  65. Vilà M et al (2009) Invasive plant integration into native plant-pollinator networks across Europe. Proc R Soc B 276:3887–3893PubMedCentralPubMedCrossRefGoogle Scholar
  66. Whitney BS et al (2011) A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeogr Palaeoclimatol Palaeoecol 307:177–192CrossRefGoogle Scholar
  67. Wright SJ et al (2007) The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39:289–291CrossRefGoogle Scholar
  68. Zaya DN, Howe HF (2009) The anomalous Kentucky coffeetree: megafaunal fruit sinking to extinction? Oecologia 161:221–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mathias M. Pires
    • 1
  • Mauro Galetti
    • 2
  • Camila I. Donatti
    • 3
  • Marco A. Pizo
    • 4
  • Rodolfo Dirzo
    • 3
  • Paulo R. GuimarãesJr.
    • 1
  1. 1.Departamento de Ecologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de EcologiaUniversidade Estadual PaulistaRio ClaroBrazil
  3. 3.Department of BiologyStanford UniversityStanfordUSA
  4. 4.Departamento de ZoologiaUniversidade Estadual PaulistaRio ClaroBrazil

Personalised recommendations