Skip to main content

Advertisement

Log in

Disentangling root responses to climate change in a semiarid grassland

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4—but not C3—roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adair EC, Parton WJ, Del Grosso SJ et al (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Change Biol 14:2636–2660

    Google Scholar 

  • Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94(4):713–724

    Article  Google Scholar 

  • Allard V, Newton PCD, Lieffering M, Soussana JF, Grieu P, Matthew C (2004) Elevated CO2 effects on decomposition processes in a grazed grassland. Glob Change Biol 10:1553–1564

    Article  Google Scholar 

  • Allard V, Newton PCD, Lieffering M, Soussana JF, Carran RA, Matthew C (2005) Increased quantity and quality of coarse soil organic matter fraction at elevated CO2 in a grazed grassland are a consequence of enhanced root growth rate and turnover. Plant Soil 276:49–60

    Article  CAS  Google Scholar 

  • Anderson LJ, Derner JD, Polley HW, Gordon WS, Eissenstat DM, Jackson RB (2010) Root responses along a subambient to elevated CO2 gradient in a C3–C4 grassland. Glob Change Biol 16:454–468

    Article  Google Scholar 

  • Arnone JA, Zaller JG, Spehn EM, Niklaus PA, Wells CE, Korner C (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol 147:73–86

    Article  CAS  Google Scholar 

  • Bai WM, Wan SQ, Niu SL et al (2010) Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob Change Biol 16:1306–1316

    Article  Google Scholar 

  • Berg B, Mcclaugherty C (2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin

    Book  Google Scholar 

  • Bjork RG, Majdi H, Klemedtsson L, Lewis-Jonsson L, Molau U (2007) Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. New Phytol 176:862–873

    Article  PubMed  Google Scholar 

  • Bontti EE, Decant JP, Munson SM et al (2009) Litter decomposition in grasslands of Central North America (US Great Plains). Glob Change Biol 15:1356–1363

    Article  Google Scholar 

  • Carrillo Y, Pendall E, Dijkstra FA, Morgan JA, Newcomb JM (2011) Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant Soil 347:339–350

    Article  CAS  Google Scholar 

  • Carrillo Y, Dijkstra F, Pendall E, Morgan J, Blumenthal D (2012) Controls over soil nitrogen pools in a semiarid grassland under elevated CO2 and warming. Ecosystems 15:761–774

    Article  CAS  Google Scholar 

  • Chapman JA, King JS, Pregitzer KS, Zak DR (2005) Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots. Tree Physiol 25:1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Cheng XL, Luo YQ, Su B et al (2010) Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie. Agric Ecosyst Environ 138:206–213

    Article  Google Scholar 

  • Coleman DC, DA Crossley J, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier Publishing, San Diego

    Google Scholar 

  • Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009) Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Glob Change Biol 15:2003–2019

    Article  Google Scholar 

  • De Boeck HJ, Lemmens C, Zavalloni C et al (2008) Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences 5:585–594

    Article  Google Scholar 

  • De Graaff MA, Van Groenigen KJ, Six J, Hungate B, Van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–2091

    Article  Google Scholar 

  • De Graaff MA, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064

    Article  PubMed  Google Scholar 

  • De Graaff MA, Schadt CW, Rula K, Six J, Schweitzer JA, Classen AT (2011) Elevated CO2 and plant species diversity interact to slow root decomposition. Soil Biol Biochem 43:2347–2354

    Article  Google Scholar 

  • De Graaff MA, Six J, Jastrow JD, Schadt CW, Wullschleger SD (2013) Variation in root architecture among switchgrass cultivars impacts root decomposition rates. Soil Biol Biochem 58:198–206

    Article  Google Scholar 

  • Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF (2010) Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytol 187:426–437. doi:10.1111/j.1469-8137.2010.03293.x

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra FA, Pendall E, Morgan JA et al (2012) Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol 196:807–815

    Article  CAS  PubMed  Google Scholar 

  • Dilustro JJ, Day FP, Drake BG (2001) Effects of elevated atmospheric CO2 on root decomposition in a scrub oak ecosystem. Glob Change Biol 7:581–589

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Fitter AH, Self GK, Wolfenden J et al (1996) Root production and mortality under elevated atmospheric carbon dioxide. Plant Soil 187:299–306

    Article  CAS  Google Scholar 

  • Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P (1999) Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. Oecologia 120:575–581

    Article  Google Scholar 

  • Garcia-Pausas J, Casals P, Rovira P, Vallecillo S, Sebastia MT, Romanya J (2012) Decomposition of labelled roots and root-C and -N allocation between soil fractions in mountain grasslands. Soil Biol Biochem 49:61–69

    Article  CAS  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Gillon D, Joffre R, Ibrahima A (1994) Initial litter properties and decay rate: a microcosm experiment on Mediterranean species. Can J Bot 72:946–954

    Article  Google Scholar 

  • Gorissen A, Cotrufo MF (2000) Decomposition of leaf and root tissue of three perennial grass species grown at two levels of atmospheric CO2 and N supply. Plant Soil 224:75–84

    Article  CAS  Google Scholar 

  • Gorissen A, Vanginkel JH, Keurentjes JJB, Vanveen JA (1995) Grass root decomposition is retarded when grass has been grown under elevated CO2. Soil Biol Biochem 27:117–120

    Article  CAS  Google Scholar 

  • Harmon ME, Silver WL, Fasth B, Chen H, Burke IC, Parton WJ, Hart SC, Currie WS, Lidet (2009) Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Change Biol 15:1320–1338

    Article  Google Scholar 

  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513

    Article  PubMed  Google Scholar 

  • Hui DF, Jackson RB (2006) Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol 169:85–93

    Article  CAS  PubMed  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–7366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439

    Article  Google Scholar 

  • Kimball BA, Conley MM, Wang S, Lin X, Luo C, Morgan J, Smith D (2008) Infrared heater arrays for warming ecosystem field plots. Glob Change Biol 14:309–320

    Article  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Holmes WE, Schmidt K (2005) Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. Oecologia 146:318–328

    Article  CAS  PubMed  Google Scholar 

  • Klumpp K, Soussana JF (2009) Using functional traits to predict grassland ecosystem change: a mathematical test of the response-and-effect trait approach. Glob Change Biol 15:2921–2934

    Article  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • LeCain DR, Morgan JA, Milchunas DG, Mosier AR, Nelson JA, Smith DP (2006) Root biomass of individual species, and root size characteristics after five years of CO2 enrichment on native shortgrass steppe. Plant Soil 279:219–228

    Article  CAS  Google Scholar 

  • Luo Y (2003) Uncertainties in interpretation of isotope signals for estimation of fine root longevity: theoretical considerations. Glob Change Biol 9:1118–1129

    Article  Google Scholar 

  • Lutze JL, Gifford RM, Adams HN (2000) Litter quality and decomposition in Danthonia richardsonii swards in response to CO2 and nitrogen supply over four years of growth. Glob Change Biol 6:13–24

    Article  Google Scholar 

  • Miglietta F, Hoosbeek MR, Foot J, Gigon F, Hassinen A, Heijmans M, Peressotti A, Saarinen T, van Breemen N, Wallen B (2001) Spatial and temporal performance of the MiniFACE (Free Air CO2 Enrichment) system on bog ecosystems in northern and central Europe. Environ Monit Assess 66:107–127

    Article  CAS  PubMed  Google Scholar 

  • Milchunas DG (2009) Estimating root production: comparison of 11 methods in shortgrass steppe and review of biases. Ecosystems 12:1381–1402

    Article  CAS  Google Scholar 

  • Milchunas DG, Morgan JA, Mosier AR, LeCain DR (2005) Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology. Glob Change Biol 11:1837–1855

    Article  Google Scholar 

  • Morgan JA, Lecain DR, Pendall E et al (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205

    Article  CAS  PubMed  Google Scholar 

  • Nie M, Pendall E, Bell C, Gasch CK, Raut S, Tamang S, Wallenstein MD (2013) Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol Lett 16:234–241

    Article  PubMed  Google Scholar 

  • NOAA (1994) Local climatological data, Cheyenne, Wyoming, Ashville, NC, National Climate Data Center

  • Norby RJ, Jackson RB (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    Article  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  CAS  PubMed  Google Scholar 

  • Ostonen I, Puttsepp U, Biel C et al (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

    Article  Google Scholar 

  • Parton W, Silver WL, Burke IC et al (2007a) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  CAS  PubMed  Google Scholar 

  • Parton WJ, Morgan JA, Wang GM, Del Grosso S (2007b) Projected ecosystem impact of the Prairie Heating and CO2 enrichment experiment. New Phytol 174:823–834

    Article  CAS  PubMed  Google Scholar 

  • Pendall E, Mosier AR, Morgan JA (2004) Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol 162:447–458

    Article  Google Scholar 

  • Pendall E, Heisler-White JL, Williams DG, Dijkstra FA, Carrillo Y, Morgan JA, LeCain DR (2013) Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide. PLoS One 8(8):e71921. doi:10.1371/journal.pone.0071921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pilon R, Picon-Cochard C, Bloor JMG, Revaillot S, Kuhn E, Falcimagne R, Balandier P, Soussana JF (2013) Grassland root demography responses to multiple climate change drivers depend on root morphology. Plant Soil 364:395–408

    Article  CAS  Google Scholar 

  • Robinson D (2007) Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc R Soc B Biol Sci 274:2753–2759

    Article  CAS  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Sindhoj E, Hansson AC, Andren O, Katterer T, Marissink M, Pettersson R (2000) Root dynamics in a semi-natural grassland in relation to atmospheric carbon dioxide enrichment, soil water and shoot biomass. Plant Soil 223:253–263

    Article  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M et al (eds) (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, New York. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Vuuren MMI, Robinson D, Scrimgeour CM, Raven JA, Fitter AH (2000) Decomposition of C-13-labelled wheat root systems following growth at different CO2 concentrations. Soil Biol Biochem 32:403–413

    Article  Google Scholar 

  • Volder A, Gifford RM, Evans JR (2007) Effects of elevated atmospheric CO2, cutting frequency, and differential day/night atmospheric warming on root growth and turnover of Phalaris swards. Glob Change Biol 13:1040–1052

    Article  Google Scholar 

  • Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’neill EG (2004) CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytol 162:437–446

    Article  Google Scholar 

  • Wang D, Heckathorn SA, Wang XZ, Philpott SM (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1–13

    Article  PubMed  Google Scholar 

  • Weaver JE (1920) Root development in the grassland formation, a correlation of the root systems of native vegetation and crop plants, vol 292. Carnegie Inst. Wash., Pub

  • Xie ZB, Cadisch G, Edwards G, Baggs EM, Blum H (2005) Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE). Soil Biol Biochem 37:1387–1395

    Article  CAS  Google Scholar 

  • Zak DR, Pregitzer KS, Kubiske ME, Burton AJ (2011) Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecol Lett 14:1220–1226

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank David Smith, Erik Hardy and Matthew Parsons for their technical assistance and Joanne Newcomb, Jennifer Bell, Hannah Munn, Courtney Ellis, Christine Rumsey, Jana Heisler-White, Sun Wei, Lyndsy Soltau, Lindsay Ross, Lana MacDonald, Janet Chen for assistance in the field and in the laboratory. This material is based upon work supported by the National Science Foundation (Grant no. 1021559 DEB), USDA-CSREES Soil Processes Program (Grant no. 2008-35107-18655), the US Department of Energy’s Office of Science (BER) through the Terrestrial Ecosystem Science program, the Western Regional Center of the National Institute for Climatic Change Research at Northern Arizona University, and by the Australian Research Council (FT100100779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolima Carrillo.

Additional information

Communicated by Susanne Schwinning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, Y., Dijkstra, F.A., LeCain, D. et al. Disentangling root responses to climate change in a semiarid grassland. Oecologia 175, 699–711 (2014). https://doi.org/10.1007/s00442-014-2912-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2912-z

Keywords

Navigation