Skip to main content
Log in

Distance to semi-natural grassland influences seed production of insect-pollinated herbs

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Marginal grassland fragments, such as road verges and field margins, may act as important supplemental habitats for grassland plants in the modern agricultural landscape. However, abundance of pollinators in such fragments has been found to decline with distance to larger natural and semi-natural habitats, and this could have corresponding effects on plant pollination. In this study, we performed a field experiment on road verges with three insect-pollinated grassland herbs to examine the relationship between distance to semi-natural grassland and plant reproductive success in two landscapes with contrasting farming intensities. In Lychnis viscaria and Lotus corniculatus, seed production tended to decrease with increasing distance to semi-natural grassland, but only in the landscape with high farming intensity. Seed production in Armeria maritima spp. maritima decreased with distance in both landscapes. Although many studies have investigated effects of natural habitat on crop pollination, little is known about the impact on pollination in native plants. The results from this study indicate that management of semi-natural grasslands improves not only biodiversity within the actual grassland but also pollination of native plants in the surrounding agricultural landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ågren J (1996) Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology 77:1779–1790

    Article  Google Scholar 

  • Ågren J, Ehrlén J, Solbreck C (2008) Spatio-temporal variation in fruit production and seed predation in a perennial herb influenced by habitat quality and population size. J Ecol 96:334–345

    Article  Google Scholar 

  • Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    Article  PubMed  Google Scholar 

  • Allen-Wardell G, Berhardt P, Bitner R, Burquez A et al (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Biol Conserv 12:8–17

    Article  Google Scholar 

  • Angeloni F, Ouborg J, Leimu R (2011) Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol Conserv 144:35–43

    Article  Google Scholar 

  • Ashman TL, Knight TM, Steets JA et al (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Auestad I, Rydgren K, Auestad I (2011) Road verges: potential refuges for declining grassland species despite remnant vegetation dynamics. Ann Bot Fenn 48:289–303

    Article  Google Scholar 

  • Bartomeus I, Montserrat Vilà M, Steffan-Dewenter I (2010) Combined effects of Impatiens glandulifera invasion and landscape structure on native plant pollination. J Ecol 98:440–450

    Article  Google Scholar 

  • Biesmeijer JC et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  CAS  PubMed  Google Scholar 

  • Bommarco R, Kleijn D, Potts SD (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238

    Article  PubMed  Google Scholar 

  • Burd M (1994) Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed. Bot Rev 60:83–139

    Article  Google Scholar 

  • Corbet SA (1995) Insects, plants and succession: advantages of long-term set-aside. Agric Ecosyst Environ 53:201–217

    Article  Google Scholar 

  • Cousins SAO (2006) Plant species richness in midfield islets and road verges—the effect of landscape fragmentation. Biol Conserv 127:500–509

    Article  Google Scholar 

  • Cousins SAO (2009) Landscape history and soil properties affect grassland decline and plant species richness in rural landscapes. Biol Conserv 142:2752–2758

    Article  Google Scholar 

  • Cunningham SA (2000) Depressed pollination in habitat fragments causes low fruit set. Proc R Soc Lond B 267:1149–1152

    Article  CAS  Google Scholar 

  • Dauber J et al (2010) Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach. J Ecol 98:188–196

    Article  Google Scholar 

  • Ekroos J, Rundlöf M, Smith HG (2013) Trait-dependent responses of flower-visiting insects to distance to semi-natural grasslands and landscape heterogeneity. Landscape Ecol. doi:10.1007/s10980-013-9864-2

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Eriksson O, Cousins SAO, Bruun HH (2002) Land-use history and fragmentation of traditionally managed grasslands in Scandinavia. J Veg Sci 13:743–748

    Article  Google Scholar 

  • Garibaldi LA et al (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14:1062–1072

    Article  PubMed  Google Scholar 

  • Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. Ecology 71:757–764

    Google Scholar 

  • Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208

    Article  CAS  PubMed  Google Scholar 

  • Goverde M, Schweizer K, Erhardt BBA (2002) Small-scale habitat fragmentation effects on pollinator behaviour: experimental evidence from the bumblebee Bombus veteranus on calcareous grasslands. Biol Conserv 104:293–299

    Article  Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Holzschuh A, Dudenhoffer J-H, Teja Tscharntke T (2012) Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol Conserv 153:101–107

    Article  Google Scholar 

  • Jakobsson A, Padron B (2013) Do the invasive Lupinus polyphyllus increase pollinator visitation to a native herb through effects on pollinator population sizes? Oecologia. doi:10.1007/s00442-013-2756-y

  • Jantunen J, Saarinen K, Valtonen A, Saarnio S (2007) Flowering and seed production success along roads with different mowing regimes. Appl Veg Sci 10:285–292

    Article  Google Scholar 

  • Jauker F, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc Ecol 24:547–555

    Article  Google Scholar 

  • Jones DA, Turkington R (1986) Biological flora of the British Isles no. 195 Lotus corniculatus L. J Ecol 74:1185–1212

    Article  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kells AR, Goulson D (2003) Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biol Conserv 109:165–174

    Article  Google Scholar 

  • Kleijn D, van Langevelde F (2006) Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic Appl Ecol 7:201–214

    Article  Google Scholar 

  • Klein A-M, Brittain C, Hendrix SD, Thorp R, Williams N, Kremen C (2012) Wild pollination services to California almond rely on semi-natural habitat. J Appl Ecol 49:723–732

    Google Scholar 

  • Kolb A, Ehrlén J, Eriksson O (2007) Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspect Plant Ecol Evol Syst 9:79–100

    Article  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krewenka KM, Holzschuh A, Tscharntke T, Dormann CF (2011) Landscape elements as potential barriers and corridors for bees, wasps and parasitoids. Biol Conserv 144:1816–1825

    Article  Google Scholar 

  • Krishnan S, Kushalappa CG, Shaanker RU, Ghazoul J (2012) Status of pollinators and their efficiency in coffee fruit set in a fragmented landscape mosaic in South India. Basic Appl Ecol 13:277–285

    Article  Google Scholar 

  • Kull K, Zobel M (1991) High species richness in an Estonian wooded meadow. J Veg Sci 2:711–714

    Article  Google Scholar 

  • Kwak M, Jennersten O (1986) The significance of pollination time and frequency, and purity of pollen loads for seed set in Rhinanthus angustifolius (Schrophulariaceae) and Viscaria vulgaris (Caryophyllaceae). Oecologia 70:502–507

    Article  Google Scholar 

  • Le Féon V et al (2010) Intensification of agriculture, landscape composition and wild bee communities: a large scale study in four European countries. Agric Ecosyst Environ 137:143–150

    Article  Google Scholar 

  • Lentini PE, Martin TG, Gibbons P, Fischer J, Cunningham SA (2012) Supporting wild pollinators in a temperate agricultural landscape: maintaining mosaics of natural features and production. Biol Conserv 149:84–92

    Article  Google Scholar 

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond B 271:2605–2611

    Article  Google Scholar 

  • Meyer B, Jauker F, Steffan-Dewenter I (2009) Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic Appl Ecol 10:178–186

    Article  Google Scholar 

  • Milberg P, Persson T (1994) Soil seed bank and species recruitment in road verge grassland vegetation. Ann Bot Fenn 31:155–162

    Google Scholar 

  • Morandin LA, Abbott VA, Franklin MT (2007) Can pastureland increase wild bee abundance in agriculturally intense areas? Basic Appl Ecol 8:117–124

    Article  Google Scholar 

  • Mustajärvi K, Siikama P, Åkerberg A (2005) Inbreeding depression in perennial Lychnis viscaria (Caryophyllaceae): effects of population mating history and nutrient availability. Am J Bot 92:1853–1861

    Article  PubMed  Google Scholar 

  • Nielsen A, Ims RA (2000) Bumble bee pollination of the sticky catchfly in a fragmented agricultural landscape. Ecoscience 7:157–165

    Google Scholar 

  • Norderhaug A, Ihse M, Pedersen O (2000) Biotope patterns and abundance of meadow plant species in a Norwegian rural landscape. Landsc Ecol 15:201–218

    Article  Google Scholar 

  • Öckinger E, Smith HG (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59

    Article  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Richards AJ (1997) Plant breeding systems. Chapman and Hall, London

    Book  Google Scholar 

  • Ricketts TH et al (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515

    Article  PubMed  Google Scholar 

  • Schmucki R, de Blois ÆS (2009) Pollination and reproduction of a self-incompatible forest herb in hedgerow corridors and forest patches. Oecologia 160:721–733

    Article  PubMed  Google Scholar 

  • Schulke B, Waser NM (2001) Long-distance pollinator flights and pollen dispersal between populations of Delphinium nuttallianum. Oecologia 127:239–245

    Article  CAS  PubMed  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–440

    Article  Google Scholar 

  • Steffan-Dewenter I, Munzenberg U, Tscharntke T (2001) Pollination, seed set and seed predation on a landscape scale. Proc R Soc Lond B 268:1685–1690

    Article  CAS  Google Scholar 

  • Steffan-Dewenter Munzenberg U, Burger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 12:651–652

    Article  Google Scholar 

  • Steffan-Dewenter I, Klein A-M, Gaebele V, Alfert T, Tscharntke T (2006) Bee diversity and plant-pollinator interactions in fragmented landscapes. In: Waser NM, Ollerton J (eds) Plant-pollinator interaction: from specialization to generalization. University of Chicago Press, Chicago, pp 387–407

    Google Scholar 

  • Tikka PM, Koski PS, Kivelai RA, Kuitunen MT (2000) Can grassland plant communities be preserved on road and railway verges? Appl Veg Sci 25:25–32

    Article  Google Scholar 

  • Tommasi D, Miro A, Higo HA, Winston ML (2004) Bee diversity and abundance in an urban setting. Can Entomol 136:851–869

    Article  Google Scholar 

  • Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Article  PubMed  Google Scholar 

  • Vera FWM (2000) Grazing ecology and forest history. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Waites AR, Ågren J (2004) Pollinator visitation, stigmatic pollen loads and among-population variation in seed set in Lythrum salicaria. J Ecol 92:512–526

    Article  Google Scholar 

  • Wilson GB, Wright J, Lusby P, Whittington WJ, Humphries RN (1995) Biological flora of the British Isles, no. 188. Lychnis viscaria L. (Viscaria vulgaris Bernh.). J Ecol 83:1039–1051

    Article  Google Scholar 

  • Wolf AT, Harrison SP (2001) Effects of habitat size and patch isolation on reproductive success of the serpentine morning glory. Conserv Biol 15:111–121

    Article  Google Scholar 

Download references

Acknowledgments

Andreas Nyström and Emelie Hedlin provided excellent help in the field. We thank P. Börjesson and J. Ehrlén for statistical advice, and two anonymous reviewers for helpful comments on the manuscript. The study was financed by a grant to A. Jakobsson from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning. The experiments comply with the current laws of Sweden in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Jakobsson.

Additional information

Communicated by Christina Marie Caruso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobsson, A., Ågren, J. Distance to semi-natural grassland influences seed production of insect-pollinated herbs. Oecologia 175, 199–208 (2014). https://doi.org/10.1007/s00442-014-2904-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2904-z

Keywords

Navigation