Experience teaches plants to learn faster and forget slower in environments where it matters

Abstract

The nervous system of animals serves the acquisition, memorization and recollection of information. Like animals, plants also acquire a huge amount of information from their environment, yet their capacity to memorize and organize learned behavioral responses has not been demonstrated. In Mimosa pudica—the sensitive plant—the defensive leaf-folding behaviour in response to repeated physical disturbance exhibits clear habituation, suggesting some elementary form of learning. Applying the theory and the analytical methods usually employed in animal learning research, we show that leaf-folding habituation is more pronounced and persistent for plants growing in energetically costly environments. Astonishingly, Mimosa can display the learned response even when left undisturbed in a more favourable environment for a month. This relatively long-lasting learned behavioural change as a result of previous experience matches the persistence of habituation effects observed in many animals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allis CD, Jenuwein T, Reinberg D, Caparros ML (2007) Epigenetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  2. Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11:563–576

    PubMed  Article  CAS  Google Scholar 

  3. Applewhite PB (1972) Behavioral plasticity in the sensitive plant, Mimosa. Behav Biol 7:47–53

    PubMed  Article  CAS  Google Scholar 

  4. Baldwin IT, Schmelz EA (1996) Immunological “memory” in the induced accumulation of nicotine in wild tobacco. Ecology 77:236–246

    Article  Google Scholar 

  5. Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4

  6. Bauer EP, Schafe GE, LeDoux JE (2002) NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 22:5239–5249

    PubMed  CAS  Google Scholar 

  7. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Bio 1:11–21

    Article  CAS  Google Scholar 

  8. Bose I, Karmakar R (2008) Simple models of plant learning and memory. Phys Script T106:9–12

    Article  Google Scholar 

  9. Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    PubMed  Article  CAS  Google Scholar 

  10. Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    PubMed  Article  Google Scholar 

  11. Burnham KP, Anderson DR (2002) Model selection and multimodal inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  12. Cahill JF Jr, Bao T, Maloney M, Kolenosky C (2013) Mechanical leaf damage causes localized, but not systematic, changes in leaf movement behaviour of the sensitive plant, Mimosa pudica. Botany 91:43–47

    Article  Google Scholar 

  13. Chakravarthy SV, Ghosh J (1997) On Hebbian-like adaptation in heart muscle: a proposal for ‘cardiac memory’. Biol Cybern 76:207–215

    PubMed  Article  CAS  Google Scholar 

  14. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  15. Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    Article  CAS  Google Scholar 

  16. Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107:113–119

    Article  CAS  Google Scholar 

  17. Crawley MJ (2007) The R book. Wiley, Chichester

    Google Scholar 

  18. Cvrčková F, Lipavská H, Žárský V (2009) Plant intelligence: why, why not or where? Plant Signal Behav 4:394–399

    PubMed Central  PubMed  Article  Google Scholar 

  19. Demongeot J, Thomas R, Thellier M (2000) A mathematical model for storage and recall functions in plants. C R Acad Sci III 323:93–97

    PubMed  Article  CAS  Google Scholar 

  20. Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun 3:740

    PubMed  Article  CAS  Google Scholar 

  21. Dostál R (1967) On integration in plants. Harvard University Press, Cambridge

    Google Scholar 

  22. Dukas R (2004) Evolutionary biology of animal cognition. Annu Rev Ecol Evol Syst 35:347–374

    Article  Google Scholar 

  23. Eisenstein EM, Eisenstein D, Smith JC (2001) The evolutionary significance of habituation and sensitization across phylogeny: a behavioural homeostasis model. Integr Phys Behav Sci 36:251–265

    Article  Google Scholar 

  24. Eisner T (1981) Leaf folding in a sensitive plant: a defensive thorn-exposure mechanism. Proc Natl Acad Sci USA 78:402–404

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  25. Esdin J, Pearce K, Glanzman DL (2010) Long-term habituation of the gill-withdrawal reflex in Aplysia requires gene transcription, calcineurin and L-type voltage-gated calcium channels. Front Behav Neurosci 4:181

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  26. Fleurat-Lessard P, Bouche-Pillion S, Leloup C, Bonnemain J (1997) Distribution and activity of the plasma membrane H+-ATPase related to motor cell function in Mimosa pudica L. Plant Physiol 114:827–834

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    PubMed  Article  CAS  Google Scholar 

  28. Gális I, Gaquerel E, Pandey SP, Baldwin IT (2009) Molecular mechanisms underlying plant memory in JA-mediated defence responses. Plant Cell Environ 32:617–627

    PubMed  Article  CAS  Google Scholar 

  29. Giles AC, Rankin CH (2009) Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Neurobiol Learn Mem 92:139–146

    PubMed  Article  Google Scholar 

  30. Ginsburg S, Jablonka E (2009) Epigenetic learning in non-neural organisms. J Biosci 33:633–646

    Article  Google Scholar 

  31. Glanzman DL (2009) Habituation in Aplysia: the Cheshire cat of neuro-biology. Neurobiol Learn Mem 92:147–154

    PubMed  Article  CAS  Google Scholar 

  32. Goodrich J, Tweedie S (2002) Remembrance of things past: chromatin remodeling in plant development. Annu Rev Cell Dev Biol 18:707–746

    PubMed  Article  CAS  Google Scholar 

  33. Grissom N, Bhatnagar S (2009) Habituation to repeated stress: get used to it. Neurobiol Learn Mem 92:215–224

    PubMed Central  PubMed  Article  Google Scholar 

  34. Halling BD, Aracena-Parks P, Hamilton SL (2005) Regulation of voltage-gated Ca2+ channels by calmodulin. Sci STKE 315:15. doi:10.1126/stke.3152005re15

    Google Scholar 

  35. Han S-K, Wagner D (2013) Role of chromatin in water stress responses in plants. J Exp Bot. doi:10.1093/jxb/ert403

    Google Scholar 

  36. Hemmi JM, Merkle T (2009) High stimulus specificity characterizes anti-predator habituation under natural conditions. Proc R Soc B 276:4381–4388

    PubMed Central  PubMed  Article  Google Scholar 

  37. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:1–32

    Google Scholar 

  38. Hoddinott J (1997) Rates of translocation and photosynthesis in Mimosa pudica L. New Phytol 79:269–272

    Article  Google Scholar 

  39. Inoue J (2008) A simple Hopfield-like cellular network model of plant intelligence. Prog Brain Res 168:169–174

    PubMed  Article  Google Scholar 

  40. Jensen EL, Dill LM, Cahill JF Jr (2011) Applying behavioral-ecological theory to plant defense: light-dependent movement in Mimosa pudica suggests a trade-off between predation risk and energetic reward. Am Nat 177:377–381

    PubMed  Article  Google Scholar 

  41. Karban R (2008) Plant behaviour and communication. Ecol Lett 11:727–739

    PubMed  Article  Google Scholar 

  42. Karban R, Niiho C (1995) Induced resistance and susceptibility to herbivory: plant memory and altered plant development. Ecology 76:1220–1225

    Article  Google Scholar 

  43. Kawecki TJ (2010) Evolutionary ecology of learning: insights from fruit flies. Popul Ecol 52:15–25

    Article  Google Scholar 

  44. Kenzer AL, Ghezzi PM, Fuller T (2013) Stimulus specificity and dishabituation of operant responding in humans. J Exp Anal Behav 100:61–78

    PubMed  Article  Google Scholar 

  45. Kim MC, Chung WS, Yun D-J, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  46. Kinoshita T, Jacobsen SE (2012) Opening the door to epigenetics in PCP. Plant Cell Physiol 53:763–765

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  47. Krasne FB, Teshiba TM (1995) Habituation of an invertebrate escape reflex due to modulation by higher centers rather than local events. Proc Natl Acad Sci USA 92:3362–3366

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  48. Ledón-Rettig CC, Richards CL, Martin LB (2013) Epigenetics for behavioral ecologists. Behav Ecol 24:311–324

    Article  Google Scholar 

  49. Lima SL (1998) Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. Adv Study Behav 227:215–290

    Article  Google Scholar 

  50. Limback-Stokin K, Korzus E, Nagaoka-Yasuda R, Mayford M (2004) Nuclear calcium/calmodulin regulates memory consolidation. J Neurosci 24:10858–10867

    PubMed  Article  CAS  Google Scholar 

  51. Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 422:1046–1049

    Article  CAS  Google Scholar 

  52. Moran N (2007) Osmoregulation of leaf motor cells. FEBS Lett 581:2337–2347

    PubMed  Article  CAS  Google Scholar 

  53. Okano H, Hirano T, Balaban E (2000) Learning and memory. Proc Natl Acad Sci USA 97:12403–12404

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  54. Pecinka A, Mittelsten Scheid O (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 53:801–808

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  55. Perisse E, Raymond-Delpech V, Neant I, Matsumoto Y, Leclerc C, Moreau M, Sandoz JC (2009) Early calcium increase triggers the formation of olfactory long-term memory in honeybees. BMC Biol 7:30. doi:10.1186/1741-7007-7-30

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  56. Petrinovich L, Widaman KF (1984) An evaluation of statistical strategies to analyse repeated-measures data. In: Peeke HVS, Petrinovich L (eds) Habituation, sensitization, and behaviour. Academic Press, New York, pp 155–201

    Google Scholar 

  57. Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J, Coppola G, Geyer MA, Glanzman DL, Marsland S, et al. (2009) Habituation revisited: an updated and revised description of the behavioural characteristics of habituation. Neurobiol Learn Mem 92:135–138

    PubMed Central  PubMed  Article  Google Scholar 

  58. Reyes JC, Hennig L, Gruissem W (2002) Chromatin-remodeling and memory factors. New regulators of plant development. Plant Physiol 130:1090–1101

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  59. Roshchina VV (2001) Neurotransmitters in plant life. Science Publishers, Enfield

    Google Scholar 

  60. Ruuhola T, Salminen JP, Haviola S, Yang S, Rantala MJ (2007) Immunological memory of mountain birches: effects of phenolics on performance of the autumnal moth depend on herbivory history of trees. J Chem Ecol 33:1160–1176

    PubMed  Article  CAS  Google Scholar 

  61. Shepherd VA (2012) At the root of plant neurobiology. In: Volkov AG (ed) Plant electrophysiology. Springer, Berlin, pp 3–43

    Google Scholar 

  62. Sung S, Amasino MR (2004) Vernalisation and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10

    PubMed  Article  CAS  Google Scholar 

  63. Sztarker J, Tomsic D (2011) Brain modularity in arthropods: individual neurons that support “what” but not “where” memories. J Neurosci 31:8175–8180

    PubMed  Article  CAS  Google Scholar 

  64. Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15:1–12

    PubMed  Article  CAS  Google Scholar 

  65. Thellier M, Desbiez MO, Champagnat P, Kergosien Y (1982) Do memory processes occur also in plants? Physiol Plant 56:281–284

    Article  Google Scholar 

  66. Thellier M, Le Sceller L, Norris V, Verdus MC, Ripoll C (2000) Long-distance transport, storage and recall of morphogenetic information in plants: the existence of a primitive plant “memory”. C R Acad Sci III 323:81–91

    PubMed  Article  CAS  Google Scholar 

  67. Thompson RF (2009) Habituation: a history. Neurobiol Learn Mem 92:127–134

    PubMed Central  PubMed  Article  Google Scholar 

  68. Thorpe WH (1963) Learning and instinct in animals. Methuen, London

    Google Scholar 

  69. Tomsic D, de Astrada MB, Sztarker J, Maldonado H (2009) Behavioral and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus. Neurobiol Learn Mem 92:176–182

    PubMed  Article  Google Scholar 

  70. Trewavas T (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    PubMed  Article  CAS  Google Scholar 

  71. Tseng AS, Levin M (2013) Cracking the bioelectric code: probing endogenous ionic controls of pattern formation. Commun Integr Biol 6:e22595

    PubMed Central  PubMed  Article  Google Scholar 

  72. Turner CH, Robling AG, Duncan RL, Burr DB (2002) Do bone cells behave like a neuronal network? Calcif Tissue Int 70:435–442

    PubMed  Article  CAS  Google Scholar 

  73. Uehlein N, Kaldenhoff R (2008) Aquaporins and plant leaf movements. Ann Bot 101:1–4

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  74. Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    PubMed  Article  CAS  Google Scholar 

  75. Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov E (2008) Plant electrical memory. Plant Signal Behav 3:490–492

    PubMed Central  PubMed  Article  Google Scholar 

  76. Wiel DE, Weeks JC (1996) Habituation and dishabituation of the proleg withdrawal reflex in larvae of the sphinx hawk, Manduca sexta. Behav Neurosci 110:1133–1147

    PubMed  Article  CAS  Google Scholar 

  77. Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62:3727–3735

    PubMed  Article  CAS  Google Scholar 

  78. Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    PubMed  Article  CAS  Google Scholar 

  79. Yellen G (1998) The moving parts of voltage-gated ion channels. Q Rev Biophys 31:239–295

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Elisa Azzarello and Elisa Masi for assistance with setting up the light environments, and Leigh Simmons, Joseph Tomkins, Anthony Trewavas, Daniel Robert for valuable comments on the manuscript. This study was supported by Research Fellowships from the University of Western Australia and the Australian Research Council to M. G. and research funding from European Commission to S. M.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Monica Gagliano.

Additional information

Communicated by Richard Karban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 66 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gagliano, M., Renton, M., Depczynski, M. et al. Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia 175, 63–72 (2014). https://doi.org/10.1007/s00442-013-2873-7

Download citation

Keywords

  • Behaviour
  • Ecological trade-offs
  • Information
  • Anti-predator responses
  • Learning
  • Memory