Skip to main content

Advertisement

Log in

Faecal particle size in free-ranging primates supports a ‘rumination’ strategy in the proboscis monkey (Nasalis larvatus)

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In mammalian herbivores, faecal particle size indicates chewing efficiency. Proboscis monkeys (Nasalis larvatus) are foregut fermenters in which regurgitation and remastication (i.e. rumination) was observed in the wild, but not with the same consistency as found in ruminants and camelids. To test whether this species has exceptional chewing efficiency among primates, as ruminants have among mammals, we compared faecal particle size in free-ranging specimens with those of 12 other primate species. The discrete mean faecal particle size (dMEAN) increased with body mass (M) as dMEAN (mm) = 0.65 (95 % confidence interval 0.49–0.87) M 0.33 (0.23–0.43) in simple-stomached species. At 0.53 ± 0.09 mm, dMEAN of proboscis monkeys was particularly small for their average M (15 kg) and significantly smaller than values of two other foregut fermenting primate species. While we cannot exclude other reasons for the exceptional chewing efficiency in proboscis monkeys, this represents circumstantial evidence for regular use of rumination in this species. Thus, proboscis monkeys might be a model for convergent evolution towards rumination in a non-ungulate taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal KR, Lucas PW, Prinz JF, Bruce IC (1997) Mechanical properties of foods responsible for resisting food breakdown in the human mouth. Arch Oral Biol 42:1–9

    Article  CAS  PubMed  Google Scholar 

  • Barker S, Brown GD, Calaby JH (1963) Food regurgitation in the macropodidae. Aust J Sci 25:430–432

    Google Scholar 

  • Bjorndal KA, Bolten AB, Moore JE (1990) Digestive fermentation in herbivores: effect of food particle size. Physiol Zool 63:710–721

    Google Scholar 

  • Boonratana R (2003) Feeding ecology of proboscis monkeys (Nasalis larvatus) in the Lower Kinabatangan, Sabah, Malaysia. Sabah Parks Nat J 6:1–26

    Google Scholar 

  • Caton MJ (1998) The morphology of the gastrointestinal tract of Pygathrix nemaeus. In: Jablonski NG (ed) Natural history of the doucs and snub-nosed monkeys. World Scientific, Singapore, pp 129–149

    Chapter  Google Scholar 

  • Caton J (1999) Digestive strategy of the Asian colobine genus Trachypithecus. Primates 40:311–325

    Article  Google Scholar 

  • Cawthon Lang KA (2005) Primate factsheets: pigtail macaque (Macaca nemestrina) taxonomy, morphology, and ecology. Retrieved 8 March 8 2013, from http://pin.primate.wisc.edu/factsheets/entry/pigtail_macaque

  • Cawthon Lang KA (2006a) Primate factsheets: chimpanzee (Pan troglodytes) taxonomy, morphology, and ecology. Retrieved 9 March 2013, from http://pin.primate.wisc.edu/factsheets/entry/chimpanzee

  • Cawthon Lang KA (2006b) Primate factsheets: olive baboon (Papio anubis) taxonomy, morphology, and ecology. Retrieved 8 March 2013, from http://pin.primate.wisc.edu/factsheets/entry/olive_baboon

  • Chivers DJ (1994) Functional anatomy of the gastrointestinal tract. In: Davies AG, Oates JF (eds) Colobine monkeys: their ecology, behaviour and evolution. Cambridge University Press, Cambridge, pp 205–257

    Google Scholar 

  • Clauss M et al (2004) Comparative analysis of physical and chemical characteristics of faeces from free-ranging and captive common hippopotami (Hippopotamus amphibius). Adv Ethol 38:26

    Google Scholar 

  • Clauss M et al (2008) The influence of natural diet composition, food intake level, and body size on ingesta passage in primates. Comp Biochem Physiol A 150:274–281

    Article  Google Scholar 

  • Clauss M, Nunn C, Fritz J, Hummel J (2009) Evidence for a tradeoff between retention time and chewing efficiency in large mammalian herbivores. Comp Biochem Physiol A 154:376–382

    Article  Google Scholar 

  • Clauss M, Hume ID, Hummel J (2010) Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4:979–992

    Article  CAS  PubMed  Google Scholar 

  • Clauss M, Steuer P, Müller DWH, Codron D, Hummel J (2013) Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PloS One 8:e68714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins WB, Smith TS (1989) Twenty-four hour behaviour patterns and budgets of free-ranging reindeer in winter. Rangifer 9:2–8

    Article  Google Scholar 

  • Dierenfeld ES, Koontz FW, Goldstein RS (1992) Feed intake, digestion and passage of the proboscis monkey (Nasalis larvatus) in captivity. Primates 33:399–405

    Article  Google Scholar 

  • Dunbar RIM, Bose U (1991) Adaptation to grass-eating in gelada baboons. Primates 32:1–7

    Article  Google Scholar 

  • Elgart-Berry A (2004) Fracture toughness of mountain gorilla (Gorilla gorilla beringei) food plants. Am J Primatol 62:275–285

    Article  PubMed  Google Scholar 

  • Foose TJ (1982) Trophic strategies of ruminant versus nonruminant ungulates. PhD thesis, University of Chicago, Chicago

  • Franz R, Hummel J, Müller DWH, Bauert M, Hatt J-M, Clauss M (2011) Herbivorous reptiles and body mass: effects on food intake, digesta retention, digestibility and gut capacity, and a comparison with mammals. Comp Biochem Physiol A 158:94–101

    Article  Google Scholar 

  • Fritz J, Hummel J, Kienzle E, Arnold C, Nunn C, Clauss M (2009) Comparative chewing efficiency in mammalian herbivores. Oikos 118:1623–1632

    Article  Google Scholar 

  • Fritz J, Hummel J, Kienzle E, Streich WJ, Clauss M (2010) To chew or not to chew: faecal particle size in herbivorous reptiles and mammals. J Exp Zool A 313:579–586

    Article  Google Scholar 

  • Fritz J, Hummel J, Kienzle E, Wings O, Streich WJ, Clauss M (2011) Gizzard vs. teeth, it’s a tie: food-processing efficiency in herbivorous birds and mammals and implications for dinosaur feeding strategies. Palaeobiology 37:577–586

    Article  Google Scholar 

  • Fritz J et al (2012a) Retention of solutes and different-sized particles in the digestive tract of the ostrich (Struthio camelus massaicus), and a comparison with mammals and reptiles. Comp Biochem Physiol A 163:56–65

    Article  CAS  Google Scholar 

  • Fritz J, Streich WJ, Schwarm A, Clauss M (2012b) Condensing results of wet sieving analyses into a single data: a comparison of methods for particle size description. J Anim Physiol Anim Nutr 96:783–797

    Article  Google Scholar 

  • Goossens B et al (2002) A boat survey of primates in the Lower Kinabatangan Wildlife Sanctuary. In: Maryati M, Takano A, Goossens B, Indran R (eds) Lower Kinabatangan Scientific Expedition. Universiti Malaysia, Sabah, pp 37–45

    Google Scholar 

  • Gron KJ (2009a) Primate factsheets: guereza (Colobus guereza) taxonomy, morphology, and ecology. Retrieved 8 March 2013, from http://pin.primate.wisc.edu/factsheets/entry/guereza

  • Gron KJ (2009b) Primate factsheets: proboscis monkey (Nasalis larvatus) taxonomy, morphology, and ecology. Retrieved 8 March 2013, from http://pin.primate.wisc.edu/factsheets/entry/proboscis_monkey/taxon

  • Hashimoto C (1995) Population census of the chimpanzees in the Kalinzu Forest, Uganda: comparison between methods with nest counts. Primates 36:477–488

    Article  Google Scholar 

  • Hollihn KU (1971) Das Verhalten von Guerezas (Colobus guereza und Colobus polykomos), Nasenaffen (Nasalis larvatus) und Kleideraffen (Pygathrix nemaeus) bei der Nahrungsaufnahme und ihre Haltung. Z Säugetierkd 36:65–95

    Google Scholar 

  • Hummel J et al (2008) Differences in fecal particle size between free-ranging and captive individuals of two browser species. Zoo Biol 27:70–77

    Article  PubMed  Google Scholar 

  • Hush CJ (1996) Multiple comparisons theory and methods. CRC, Boca Raton

    Google Scholar 

  • Janis C (1976) The evolutionary strategy of the Equidae and the origins of rumen and caecal digestion. Evolution 30:757–774

    Article  Google Scholar 

  • Jones KE et al (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648 (Ecol Arch E2090-2184)

    Article  Google Scholar 

  • Karasov WH, Petrossian E, Rosenberg L, Diamond JM (1986) How do food passage rate and assimilation differ between herbivorous lizards and nonruminants mammals? J Comp Physiol B 156:599–609

    Article  CAS  PubMed  Google Scholar 

  • Kay RF, Hylander WL (1978) The dental structure of mammalian foliovores with special reference to primates and Phalangeroidea. In: Montgomery GG (ed) The ecology of arboreal foliovores. Smithsonian Institution Press, Washington, DC, pp 173–191

    Google Scholar 

  • Kingdon J (1997) The Kingdon field guide to African mammals. Academic Press, San Diego

    Google Scholar 

  • Langer P (1988) The mammalian herbivore stomach. Fischer, Stuttgart/New York

    Google Scholar 

  • Lauper M et al (2013) Rumination of different-sized particles in muskoxen (Ovibos moschatus) and moose (Alces alces) on grass and browse diets, and implications for rumination in different ruminant feeding types. Mamm Biol 78:142–152

    Article  Google Scholar 

  • Lechner I et al (2010) Differential passage of fluids and different-sized particles in fistulated oxen (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces): rumen particle size discrimination is independent from contents stratification. Comp Biochem Physiol A 155:211–222

    Article  Google Scholar 

  • Lechner-Doll M, Kaske M, Engelhardt WV (1991) Factors affecting the mean retention time of particles in the forestomach of ruminants and camelids. In: Tsuda T, Sasaki Y, Kawashima R (eds) Physiological aspects of digestion and metabolism in ruminants. Academic Press, San Diego, pp 455–482

    Chapter  Google Scholar 

  • Logan M (2001) Evidence for the occurence of rumination-like behaviour, or merycism, in koalas (Phascolarctos cinereus). J Zool 255:83–87

    Article  Google Scholar 

  • Logan M (2003) Effect of tooth wear on the rumination-like behavior, or merycism, of free-ranging koalas (Phascolarctos cinereus). J Mammal 84:897–902

    Article  Google Scholar 

  • Lucas PW, Turner IM, Dominy NJ, Yamashita N (2000) Mechanical defences to herbivory. Ann Bot 86:913–920

    Article  Google Scholar 

  • Lucas PW et al (2012) Measuring the toughness of primate foods and its ecological value. Int J Primatol 33:598–610

    Article  Google Scholar 

  • Matsuda I (2008) Feeding and ranging behaviors of proboscis monkey (Nasalis larvatus) in Sabah, Malaysia. PhD thesis, Graduate School of Environmental Earth Science, Hokkaido University

  • Matsuda I, Tuuga A, Higashi S (2009) The feeding ecology and activity budget of proboscis monkeys. Am J Primatol 71:478–492

    Article  PubMed  Google Scholar 

  • Matsuda I et al (2011a) Regurgitation and remastication in the foregut-fermenting proboscis monkey (Nasalis larvatus). Biol Lett 7:786–789

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsuda I, Tuuga A, Bernard H (2011b) Riverine refuging by proboscis monkeys (Nasalis larvatus) and sympatric primates: implications for adaptive benefits of the riverine habitat. Mamm Biol 76:165–171

    Article  Google Scholar 

  • Matsuda I, Akiyama Y, Tuuga A, Bernard H, Clauss M. Daily feeding rhythm in proboscis monkeys: a preliminary comparison with other nonhuman primates. Primates (in revision)

  • Matsuda I, Higashi S, Otani Y, Tuuga A, Bernard H, Corlett RT (2013) A short note on seed dispersal by colobines: the case of the proboscis monkey. Integr Zool 8:395–399

    Google Scholar 

  • Milton K (1981) Food choice and digestive strategies of two sympatric primate species. Am Nat 117:496–505

    Article  Google Scholar 

  • Moir RJ, Somers M, Waring H (1956) Studies on marsupial nutrition. I. Ruminant-like digestion in a herbivorous marsupial. Aust J Biol Sci 9:293–304

    CAS  Google Scholar 

  • Mollison BC (1960) Food regurgitation in Bennett’s wallaby and the scrub wallaby. CSIRO Wildl Res 5:87–88

    Article  Google Scholar 

  • Müller DWH et al (2011) Phylogenetic constraints on digesta separation: variation in fluid throughput in the digestive tract in mammalian herbivores. Comp Biochem Physiol A 160:207–220

    Article  Google Scholar 

  • Müller DWH et al (2013) Assessing the Jarman–Bell principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp Biochem Physiol A 164:129–140

    Article  Google Scholar 

  • Murai T, Mohamed M, Bernard H, Mahedi PA, Saburi R, Higashi S (2007) Female transfer between one-male groups of proboscis monkeys (Nasalis larvatus). Primates 48:117–121

    Article  PubMed  Google Scholar 

  • Onoda Y et al (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312

    Article  PubMed  Google Scholar 

  • Owen-Smith N (1988) Megaherbivores—the influence of very large body size on ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pan R, Oxnard C (2003) Dental variation among Asian colobines (nonhuman primates): phylogenetic similarities or functional correspondence? Zool Stud 42:93–105

    Google Scholar 

  • Prinz JF, Lucas PW (1997) An optimization model for mastication and swallowing in mammals. Proc R Soc B 264:1715–1721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanderson IT, Steinbacher G (1957) Knaurs Affenbuch. Droemersche Verlagsanstalt Knaur Nachf., Munich/Zurich

  • Schwarm A, Ortmann S, Wolf C, Streich WJ, Clauss M (2008) Excretion patterns of fluids and particle passage markers of different size in banteng (Bos javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis): two functionally different foregut fermenters. Comp Biochem Physiol A 150:32–39

    Article  Google Scholar 

  • Schwarm A, Ortmann S, Wolf C, Streich WJ, Clauss M (2009a) More efficient mastication allows increasing intake without compromising digestibility or necessitating a larger gut: comparative feeding trials in banteng (Bos javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis). Comp Biochem Physiol A 152:504–512

    Article  Google Scholar 

  • Schwarm A, Ortmann S, Wolf C, Streich WJ, Clauss M (2009b) Passage marker excretion in red kangaroo (Macropus rufus), collared peccary (Pecari tajacu) and colobine monkeys (Colobus angolensis, C. polykomos, Trachypithecus johnii). J Exp Zool A 311:647–661

    Article  Google Scholar 

  • Schwarm A, Ortmann S, Fritz J, Rietschel W, Flach EJ, Clauss M (2013) No distinct stratification of ingesta particles and no distinct moisture gradient in the forestomach of nonruminants: the wallaby, peccary, hippopotamus, and sloth. Mamm Biol 78:412–421

    Article  Google Scholar 

  • Scott JE (2011) Folivory, frugivory, and postcanine size in the cercopithecoidea revisited. Am J Phys Anthropol 146:20–27

    Article  PubMed  Google Scholar 

  • Scott JE (2012) Molar size and diet in the Strepsirrhini: implications for size-adjustment in studies of primate dental adaptation. J Hum Evol 63:796–804

    Article  PubMed  Google Scholar 

  • Semiadi G, Barry TN, Stafford KJ, Muir PD, Reid CSW (1994) Comparison of digestive and chewing efficiency and time spent eating and rumination in sambar deer (Cervus unicolor) and red deer (Cervus elaphus). J Agric Sci 123:89–97

    Article  Google Scholar 

  • Shipley LA, Gross JE, Spalinger DE, Hobbs NT, Wunder BA (1994) The scaling of intake rate in mammalian herbivores. Am Nat 143:1055–1082

    Article  Google Scholar 

  • Takenoshita Y, Yamagiwa J (2008) Estimating gorilla abundance by dung count in the northern part of Moukalaba-Doudou National Park, Gabon. Afr Study Monogr 39:41–54

    Google Scholar 

  • Ungar PS (2010) Mammal teeth: origin, evolution and diversity. John Hopkins University Press, Maryland

    Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Walker P, Murray P (1975) An assessment of masticatory efficiency in a series of anthropoid primates with special reference to the Colobinae and Cercopithecinae. In: Tuttle RH (ed) Primate functional morphology and evolution. Aldine, Chicago, pp 135–150

    Google Scholar 

  • Willis MS, Swindler DR (2004) Molar size and shape variations among Asian colobines. Am J Phys Anthropol 125:51–60

    Article  PubMed  Google Scholar 

  • Wright BW, Willis MS (2012) Relationships between the diet and dentition of Asian leaf monkeys. Am J Phys Anthropol 148:262–275

    Article  PubMed  Google Scholar 

  • Wright BW, Prodhan R, Wright K, Nadler T (2008a) Mandibular morphology as it relates to ingestive and digestive folivory in Trachypithecus and Pygathrix. Vietnam J Primatol 2:25–32

    Google Scholar 

  • Wright BW et al (2008b) It’s tough out there: variation in the toughness of ingested leaves and feeding behavior among four Colobinae in Vietnam. Int J Primatol 29:1455–1466

    Article  Google Scholar 

  • Yeager CP (1989) Feeding ecology of the proboscis monkey (Nasalis larvatus). Int J Primatol 10:497–530

    Article  Google Scholar 

Download references

Acknowledgments

I. M. and T. M. thank the Economic Planning Unit of the Malaysian Government, the Sabah Wildlife Department staff, the Kinabatangan Orangutan Conservation Project and our research assistants for support. C. H. is grateful to the Uganda National Council for Science and Technology, the Uganda Forestry Department, and the Uganda Wildlife Authority for permission to work in the Kalinzu Forest. J. Y., K. T. and Y. I. thank the CENAREST, Gabon and the IRET, Gabon, the Ministere des Eaux et Foret and the Conseil Nationale des Parcs Nationaux of the Gabonese government. We thank T. Yamda and S. Higashi for arranging the video data of proboscis monkeys, K. Doi for the sieving of the faecal samples, and two anonymous reviewers for valuable comments. This study was financed by the HOPE and Human Evolution Project of KUPRI (to I. M. and C. H.); a JSPS Grant-in-Aid for challenging Exploratory Research (24657170 to I. M.) and Scientific Research (22255007 to T. Furuichi; 24255010 to J. Y.) by MEXT; a Sasakawa Scientific Research Grant from the Japan Science Society (to I. M.); the Environment Research and Technology Development Fund (D-1007 to T. F.); the JSPS Asia-Africa Science Platform Program (2009–2011 to T. F.); SATREPS by JST and JICA, Japan (to J. Y.). This study was conducted in compliance with animal care regulations applicable to Malaysian, Ugandan and Gabonese laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikki Matsuda.

Additional information

Communicated by Joanna E. Lambert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, I., Tuuga, A., Hashimoto, C. et al. Faecal particle size in free-ranging primates supports a ‘rumination’ strategy in the proboscis monkey (Nasalis larvatus). Oecologia 174, 1127–1137 (2014). https://doi.org/10.1007/s00442-013-2863-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2863-9

Keywords

Navigation