Skip to main content
Log in

Plant phylodiversity enhances soil microbial productivity in facilitation-driven communities

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The classical relationship between biodiversity and ecosystem functioning can be better understood when the phylogenetic component of biodiversity is considered. We linked plant phylodiversity and ecosystem functioning in a water-limited gypsum ecosystem driven by plant facilitation. We tested whether (1) plant facilitation relaxes the abiotic filter imposed by gypsum, allowing the establishment of non-gypsophyte plant species, and consequently increasing plant phylodiversity, and (2) plant phylodiversity influences soil microbial productivity. Our data revealed that the gypsophyte Ononis tridentata spatially determines a macrophytic mosaic, ameliorates the microenvironment, and maximizes plant richness and phylodiversity through facilitating non-gypsophyte species. Beyond the direct effect of the nurse plant on soil microbial biomass, activity, and respiration, the analyses suggest a direct effect of plant phylodiversity (MPD) on these general indicators of soil microbial productivity. Plant diversity (Shannon index) neither correlated with the mentioned parameters nor with specific indicators of C, N and P cycling. This is the first report of a relationship between producer phylodiversity and decomposer productivity, which supports phylogenetic diversity as a relevant player of the ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguiar MR, Sala OE (1999) Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol Evol 14:273–277

    Article  PubMed  Google Scholar 

  • Armas C, Ordiales R, Pugnaire FI (2004) Plant interactions: a new comparative index. Ecology 85:2682–2686

    Article  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Barberá GG, Navarro-Cano JA, Castillo V (2006) Seedling recruitment in a semiarid steppe: the roles of microsite and predation as limiting factors. J Arid Environ 67:701–714

    Article  Google Scholar 

  • Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F et al (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96:18–34

    Article  Google Scholar 

  • Byrne BM (2009) Structural equation modeling with AMOS: basic concepts, applications and programming, 2nd edn. Routledge Taylor & Francis, New York

    Google Scholar 

  • Caballero I, Olano JM, Escudero A (2008) Seed bank spatial structure in semiarid environments: beyond the patch-area dichotomy. Plant Ecol 195:215–223

    Article  Google Scholar 

  • Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci USA 105:17012–17017

    Article  CAS  PubMed  Google Scholar 

  • Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4:e5695. doi:10.1371/journal.pone.0005695

    Article  PubMed Central  PubMed  Google Scholar 

  • Castillo JP, Verdú M, Valiente-Banuet A (2010) Neighborhood phylodiversity affects plant performance. Ecology 91:3656–3663

    Article  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606

    Article  CAS  Google Scholar 

  • Escudero A, Carnes LF, Pérez-García F (1997) Seed germination of gypsophytes and gypsovags in semi-arid central Spain. J Arid Environ 36:487–497

    Article  Google Scholar 

  • Finke DL, Snyder WE (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321:1488–1490

    Article  CAS  PubMed  Google Scholar 

  • Goberna M, Pascual JA, García C, Sánchez J (2007) Do plant clumps constitute microbial hotspots in semiarid Mediterranean patchy landscapes? Soil Biol Biochem 39:1047–1054

    Article  CAS  Google Scholar 

  • Goberna M, García C, Insam H, Hernández MT, Verdú M (2012) Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions. Microb Ecol 64:242–255

    Article  CAS  PubMed  Google Scholar 

  • Goldfarb KC, Karaoz U, Hanson CA, Santeel CA, Bradford MA, Treseder KK, Wallenstein MD, Brodie EL (2011) Differential growth responses of soil bacterial taxa to C substrates of varying chemical recalcitrance. Front Microbiol 2:94. doi:10.3389/fmicb.2011.00094

    Article  PubMed Central  PubMed  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London

    Google Scholar 

  • Hooper DU, Chapin ES III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fert Soils 6:68–72

    Article  CAS  Google Scholar 

  • Kuhn TS, Mooers AØ, Thomas GH (2011) A simple polytomy resolver for dated phylogenies. Methods Ecol Evol 2:427–436

    Article  Google Scholar 

  • Loreau M (2001) Microbial diversity, producer-decomposer interactions and ecosystem processes: a theoretical model. Proc R Soc Lond B 268:303–309

    Article  CAS  Google Scholar 

  • Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S, Escolar C et al (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Mateo G, Crespo MB (1990) Claves para la flora Valenciana. Del Cenia al Segura, Valencia

    Google Scholar 

  • Merlo ME, Mota JF, Sánchez-Gómez P (2011) Ecofisiología y adaptaciones de las plantas vasculares a las características físicas y químicas de sustratos especiales. In: Mota JF, Sánchez-Gómez P, Guirado JS (eds) Diversidad vegetal de las yeseras ibéricas. El reto de los archipiélagos edáficos para la biología de la conservación. ADIF-Mediterráneo Asesores Consultores, Almería, pp 53–73

    Google Scholar 

  • Mota JF, Sola AJ, Jiménez-Sánchez ML, Pérez-García FJ, Merlo ME (2004) Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. Biodivers Conserv 13:1792–1808

    Article  Google Scholar 

  • Mota JF, Sánchez Gómez P, Merlo Calvente ME, Catalán Rodríguez P, Laguna Lumbreras E, de la Cruz Rot M, Navarro Reyes FB, Marchal Gallardo F, Bartolomé Esteban C, Martínez Labarga JM et al (2009) Aproximación a la checklist de los gipsófitos ibéricos [Approximation to the Iberian gypsophytes checklist]. Anal Biol 31:71–80

    Google Scholar 

  • Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1995) Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems. Philos Trans R Soc Lond B 347:249–262

    Article  Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil Biochemistry. Marcel Dekker, New York, pp 293–355

    Google Scholar 

  • Parsons PF (1976) Gypsophily in plants—a review. Am Midl Nat 96:1–20

    Article  Google Scholar 

  • Pausas JG, Verdú M (2010) The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60:614–625

    Article  Google Scholar 

  • Pueyo Y, Alados CL, Maestro M, Komac B (2011) Gypsophile vegetation patterns under a range of soil properties induced by topographical position. Plant Ecol 189:301–311

    Article  Google Scholar 

  • Pugesek BH, Tomer A, Von Eye A (2003) Structural equation modeling: applications in ecological and evolutionary biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Quintana-Ascencio PF, Caballero I, Olano JM, Escudero A, Albert MJ (2009) Does habitat structure matter? Spatially explicit population modelling of an Iberian gypsum endemic. Popn Ecol 51:317–328

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Rincón A, Arenal F, González I, Manrique E, Lucas MM, Pueyo JJ (2008) Diversity of rhizobial bacteria isolated from nodules of the gypsophyte Ononis tridentata L. growing in Spanish soils. Microb Ecol 56:223–233

    Article  PubMed  Google Scholar 

  • Roquet C, Thuiller W, Lavergne S (2013) Building megaphylogenies for macroecology: taking up the challenge. Ecography 36:13–26

    Article  Google Scholar 

  • Sinsabaugh RL (1994) Enzymic analysis of microbial pattern and process. Biol Fert Soils 17:69–74

    Article  CAS  Google Scholar 

  • Soliveres S, García-Escudero P, Castillo-Monroy AP, Maestre FT, Escudero A, Valladares F (2011) Temporal dynamics of herbivory and water availability interactively modulate the outcome of a grass–shrub interaction in a semi-arid ecosystem. Oikos 120:710–719

    Article  Google Scholar 

  • Soliveres S, Torices R, Maestre FT (2012) Environmental conditions and biotic interactions acting together promote phylogenetic randomness in semi-arid plant communities: new methods help to avoid misleading conclusions. J Veg Sci 23:822–836

    Article  Google Scholar 

  • Srivastava DS, Cadotte MW, MacDonald AM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15:637–648

    Article  PubMed  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Valiente-Banuet A, Verdú M (2007) Facilitation can increase the phylogenetic diversity of plant communities. Ecol Lett 10:1029–1036

    Article  PubMed  Google Scholar 

  • Valiente-Banuet A, Verdú M (2008) Temporal shifts from facilitation to competition occur between closely related taxa. J Ecol 96:489–494

    Article  Google Scholar 

  • Valiente-Banuet A, Vital Rumebe A, Verdú M, Callaway RM (2006) Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proc Natl Acad Sci USA 103:16812–16817

    Article  CAS  PubMed  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1:28–37

    Article  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Verdú M, Pausas JG (2013) Syndrome-driven diversification in a Mediterranean ecosystem. Evolution 67:1756–1766

    Article  PubMed  Google Scholar 

  • Verdú M, Rey PJ, Alcántara JM, Siles G, Valiente-Banuet A (2009) Phylogenetic signatures of facilitation and competition in successional communities. J Ecol 97:1171–1180

    Article  Google Scholar 

  • Verdú M, Gómez-Aparicio L, Valiente-Banuet A (2012) Phylogenetic relatedness as a tool in restoration ecology: a meta-analysis. Proc R Soc Lond B 279:1761–1767

    Article  Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Webb CO, Gilbert GS, Donoghue MJ (2006) Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology 87:S123–S131

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

    Article  CAS  PubMed  Google Scholar 

  • Webster JJ, Hampton GJ, Leach FR (1984) ATP in soil: a new extractant and extraction procedure. Soil Biol Biochem 16:335–342

    Article  CAS  Google Scholar 

  • Wikstrom N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  CAS  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  • Zavaleta ES, Pasaria JP, Hulveya KB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci USA 107:1443–1446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.A.N. was partly funded by the Spanish SENECA Foundation (Programa de Formación Posdoctoral de Personal Investigador 2009). M.G. and C.G. acknowledge funding by the EU Marie Curie Programme (FP7-PEOPLE-2009-RG-248155), the Spanish Ministry of Science and Innovation and the European Social Fund (JAE-Doc Programme). A.M.N. acknowledges funding by the DGAPA-UNAM postdoctoral fellowship and the Early Career Project Grant from the BES (3975-4849). M.V. and A.V.B. acknowledge to CYTED (Acción 409AC0369) and MICINN (CGL2011-29585-C02-01) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Navarro-Cano.

Additional information

Communicated by Maria J. Pozo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 80 kb)

Supplementary material 2 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro-Cano, J.A., Goberna, M., Valiente-Banuet, A. et al. Plant phylodiversity enhances soil microbial productivity in facilitation-driven communities. Oecologia 174, 909–920 (2014). https://doi.org/10.1007/s00442-013-2822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2822-5

Keywords

Navigation