, Volume 174, Issue 3, pp 623–630

Localised intraspecific variation in the swimming phenotype of a coral reef fish across different wave exposures

  • Sandra A. Binning
  • Dominique G. Roche
  • Christopher J. Fulton
Physiological ecology - Original research


Wave-driven water flow is a major force structuring marine communities. Species distributions are partly determined by the ability to cope with variation in water flow, such as differences in the assemblage of fish species found in a given water flow environment being linked to swimming ability (based on fin shape and mode of locomotion). It remains unclear, however, whether similar assembly rules apply within a species. Here we show phenotypic variation among sites in traits functionally linked to swimming ability in the damselfish Acanthochromis polyacanthus. These sites differ in wave energy and the observed patterns of phenotypic differences within A. polyacanthus closely mirrored those seen at the interspecific level. Fish from high-exposure sites had more tapered fins and higher maximum metabolic rates than conspecifics from sheltered sites. This translates to a 36 % larger aerobic scope and 33 % faster critical swimming speed for fish from exposed sites. Our results suggest that functional relationships among swimming phenotypes and water flow not only structure species assemblages, but can also shape patterns of phenotypic divergence within species. Close links between locomotor phenotype and local water flow conditions appear to be important for species distributions as well as phenotypic divergence across environmental gradients.


Aerobic capacity Aspect ratio Critical swimming speed Metabolic rate Respirometry 


  1. Bay LK (2005) The population genetic structure of coral reef fishes on the Great Barrier Reef. PhD dissertation, School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, AustraliaGoogle Scholar
  2. Bay LK, Caley MJM, Crozier RH (2008) Meta-population structure in a coral reef fish demonstrated by genetic data on patterns of migration, extinction and re-colonisation. BMC Evol Biol 8:248. doi:10.1186/1471-2148-8-248 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bell WH, Terhune LDB (1970) Water tunnel design for fisheries research. J Fish Res Bd Can 195:1–69Google Scholar
  4. Bellwood DR, Wainwright PC, Fulton CJ, Hoey A (2002) Assembly rules and functional groups at global biogeographical scales. Funct Ecol 16:557–562. doi:10.1046/j.1365-2435.2002.00655.x CrossRefGoogle Scholar
  5. Bertness MD, Leonard GH, Levine JM, Bruno JF (1999) Climate-driven interactions among rocky intertidal organisms caught between a rock and a hot place. Oecologia 120:446–450. doi:10.1007/s004420050877 CrossRefGoogle Scholar
  6. Binning SA, Fulton CJ (2011) Non-lethal measurement of pectoral fin aspect ratio in coral reef fishes. J Fish Biol 79:812–818. doi:10.1111/j.1095-8649.2011.03070.x PubMedCrossRefGoogle Scholar
  7. Binning SA, Roche DG, Layton C (2013) Ectoparasites increase swimming costs in a coral reef fish. Biol Lett 9:20120927. doi:10.1098/rsbl.2012.0927 PubMedCrossRefGoogle Scholar
  8. Brett JR (1964) The respiratory metabolism and swimming performance of young sockeye salmon. J Fish Res Bd Can 21:1183–1226CrossRefGoogle Scholar
  9. Chapman LJ, Chapman CA, Nordlie FG, Rosenberger AE (2002) Physiological refugia: swamps, hypoxia tolerance and maintenance of fish diversity in the Lake Victoria region. Comp Biochem Physiol A-Mol Integr Physiol 133:421–437PubMedCrossRefGoogle Scholar
  10. Claireaux G, Lefrancois C (2007) Linking environmental variability and fish performance: integration through the concept of scope for activity. Philos Trans R Soc B-Biol Sci 362:2031–2041. doi:10.1098/rstb 2007.2099CrossRefGoogle Scholar
  11. Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782. doi:10.1242/jeb.084251 PubMedCrossRefGoogle Scholar
  12. Clarke RD, Buskey EJ, Marsden KC (2005) Effects of water motion and prey behavior on zooplankton capture by two coral reef fishes. Mar Biol 146:1145–1155. doi:10.1007/s00227-004-1528-y CrossRefGoogle Scholar
  13. Cooper WJ, Smith LL, Westneat MW (2009) Exploring the radiation of a diverse reef fish family: phylogenetics of the damselfishes (Pomacentridae), with new classifications based on molecular analyses of all genera. Mol Phylogen Evol 52:1–16. doi:10.1016/j.ympev.2008.12.010 CrossRefGoogle Scholar
  14. Crossland CJ, Barnes DJ (1983) Dissolved nutrients and organic particulates in water flowing over coral reefs at Lizard Island. Aust J Mar Freshwater Res 34:835–844CrossRefGoogle Scholar
  15. Denny M, Gaylord B (2002) The mechanics of wave-swept algae. J Exp Biol 205:1355–1362PubMedGoogle Scholar
  16. Desrochers A (2010) Morphological response of songbirds to 100 years of landscape change in North America. Ecology 91:1577–1582. doi:10.1890/09-2202.1 Google Scholar
  17. Doherty PJ, Mather P, Planes S (1994) Acanthochromis polyacanthus, a fish lacking larval dispersal, has genetically differentiated populations at local and regional scales on the Great Barrier Reef. Mar Biol 121:11–21. doi:10.1007/BF00349469 CrossRefGoogle Scholar
  18. Donelson JM, Munday PL, McCormick MI, Nilsson GE (2011) Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob Change Biol 17:1712–1719. doi:10.1111/j.1365-2486.2010.02339.x CrossRefGoogle Scholar
  19. Donelson JM, Munday PL, McCormick MI, Pitcher CR (2012) Rapid transgenerational acclimation of a tropical reef fish to climate change. Nature Clim Change 2:30–32. doi:10.1038/nclimate1323 CrossRefGoogle Scholar
  20. Drucker EG, Jensen JS (1996) Pectoral fin locomotion in the striped surfperch. 1. Kinematic effects of swimming speed and body size. J Exp Biol 199:2235–2242PubMedGoogle Scholar
  21. Fulton CJ, Bellwood DR (2005) Wave-induced water motion and the functional implications for coral reef fish assemblages. Limnol Oceanogr 50:255–264. doi:10.4319/lo.2005.50.1.0255 CrossRefGoogle Scholar
  22. Fulton CJ, Bellwood DR, Wainwright PC (2005) Wave energy and swimming performance shape coral reef fish assemblages. Proc R Soc B 272:827–832. doi:10.1098/rspb 2004.3029PubMedCrossRefGoogle Scholar
  23. Fulton CJ, Binning SA, Wainwright PC, Bellwood DR (2013) Wave-induced abiotic stress shapes phenotypic diversity in a coral reef fish across a geographical cline. Coral Reefs 32:685–689. doi:10.1007/s00338-013-1039-8 CrossRefGoogle Scholar
  24. Goatley CHR, Bellwood DR (2011) The roles of dimensionality, canopies and complexity in ecosystem monitoring. PLoS ONE 6:e27307. doi:10.1371/journal.pone.0027307 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Heatwole SJ, Fulton CJ (2013) Behavioural flexibility in reef fishes responding to a rapidly changing wave environment. Mar Biol 160:677–689. doi:10.1007/s00227-012-2123-2 CrossRefGoogle Scholar
  26. Johansen JL, Jones GP (2011) Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Glob Change Biol 17:2971–2979. doi:10.1111/j.1365-2486.2011.02436.x CrossRefGoogle Scholar
  27. Kaandorp JA (1999) Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol 134:295–306. doi:10.1007/s002270050547 CrossRefGoogle Scholar
  28. Kavanagh KD (2000) Larval brooding in the marine damselfish Acanthochromis polyacanthus (Pomacentridae) is correlated with highly divergent morphology, ontogeny and lift-history traits. Bul Mar Sci 66:321–337Google Scholar
  29. Langerhans RB (2008) Predictability of phenotypic differentiation across flow regimes in fishes. Integr Comp Biol 48:750–768. doi:10.1093/icb/icn092 PubMedCrossRefGoogle Scholar
  30. Leonard GH, Levine JM, Schmidt PR, Bertness MD (1998) Flow-driven variation in intertidal community structure in a Maine estuary. Ecology 79:1395–1411. doi:10.1890/0012-9658(1998)079[1395:FDVIIC]2.0.CO;2Google Scholar
  31. Losos JB (1990a) Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecol Monogr 60:369–388. doi:10.2307/1943062 CrossRefGoogle Scholar
  32. Losos JB (1990b) The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44:1189–1203. doi:10.2307/2409282 CrossRefGoogle Scholar
  33. Miller-Sims VC, Gerlach G, Kingsford MJ, Atema J (2008) Dispersal in the spiny damselfish, Acanthochromis polyacanthus, a coral reef fish species without a larval pelagic stage. Mol Ecol 17:5036–5048. doi:10.1111/j.1365-294X.2008.03986.x PubMedCrossRefGoogle Scholar
  34. Mims MC, Olden JD (2012) Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93:35–45. doi:10.1890/11-0370.1 Google Scholar
  35. Niimi AJ, Beamish FWH (1974) Bioenergetics and growth of largemouth bass (Micropterus salmoides) in relation to body-weight and temperature. Can J Zool 52:447–456PubMedCrossRefGoogle Scholar
  36. Planes S, Doherty PJ, Bernardi G (2001) Strong genetic divergence among populations of a marine fish with limited dispersal, Acanthochromis polyacanthus, within the Great Barrier Reef and the Coral Sea. Evolution 55:2263–2273. doi:10.1111/j.0014-3820.2001.tb00741.x PubMedGoogle Scholar
  37. Roche DG, Binning SA, Bosiger Y, Johansen JL, Rummer JL (2013) Finding the best estimate of metabolic rates in a coral reef fish. J Exp Biol 216:2103–2110. doi:10.1242/jeb.082925 PubMedCrossRefGoogle Scholar
  38. Rouleau S, Glemet H, Magnan P (2010) Effects of morphology on swimming performance in wild and laboratory crosses of brook trout ecotypes. Funct Ecol 24:310–321. doi:10.1111/j.1365-2435.2009.01636.x CrossRefGoogle Scholar
  39. Steffensen JF (1989) Some errors in respirometry of aquatic breathers: how to avoid and correct them. Fish Physiol Biochem 6:49–59PubMedCrossRefGoogle Scholar
  40. Steffensen JF, Johansen K, Bushnell PG (1984) An automated swimming respirometer. Comp Biochem Physiol A 79:437–440. doi:10.1016/0300-9629(84)90541-3 CrossRefGoogle Scholar
  41. Vogel S (1994) Life in moving fluids: the physical biology of flow, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  42. Wainwright PC (1991) Ecomorphology: experimental functional anatomy for ecological problems. Am Zool 31:680–693Google Scholar
  43. Webb PW (1994) The biology of fish swimming. In: Maddock L, Bone Q, Rayner JMV (eds) Mechanics and physiology of animal swimming. Cambridge University Press, Cambridge, pp 45–62Google Scholar
  44. West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278. doi:10.1146/annurev.es.20.110189.001341 CrossRefGoogle Scholar
  45. Williams DM (1982) Patterns in the distribution of fish communities across the central Great Barrier Reef. Coral Reefs 1:35–43. doi:10.1007/BF00286538 CrossRefGoogle Scholar
  46. Wilson SK, Bellwood DR, Choat JH, Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr Mar Biol 41:279–309Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sandra A. Binning
    • 1
  • Dominique G. Roche
    • 1
  • Christopher J. Fulton
    • 1
  1. 1.Division of Evolution, Ecology and Genetics, ARC Centre of Excellence for Coral Reef Studies, Research School of BiologyThe Australian National UniversityCanberraAustralia

Personalised recommendations