Skip to main content

Advertisement

Log in

Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The effects of species loss on ecosystems depend on the community’s functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators—epigeic spiders—are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD—and here particularly for trait distributions within the overall functional trait space—and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Allouche O, Kalyuzhny M, Moreno-Rueda G, Pizarro M, Kadmon R (2012) Area: heterogeneity tradeoff and the diversity of ecological communities. Proc Natl Acad Sci 109:17495–17500

    Article  CAS  PubMed  Google Scholar 

  • Bihn JH, Gebauer G, Brandl R (2010) Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91:782–792

    Article  PubMed  Google Scholar 

  • Böhnke M, Kröber W, Welk E, Wirth C, Bruelheide H (2013) Maintenance of constant functional diversity during secondary succession of a subtropical forest in China. J Veg Sci. doi:10.1111/jvs.12114

  • Both S et al (2011) Lack of tree layer control on herb layer characteristics in a subtropical forest, China. J Veg Sci 22:1120–1131

    Article  Google Scholar 

  • Brose U et al (2006) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417

    Article  PubMed  Google Scholar 

  • Bruelheide H et al (2011) Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol Monogr 81:25–41

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Model selection and multimodel inference : a practical information-theoretic approach. Springer, New York

    Book  Google Scholar 

  • Cadotte MW, Cavender-Bares J, Tilman D, TH O (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One 4:e5695

    Article  PubMed Central  PubMed  Google Scholar 

  • Cardinale BJ et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Cardoso P, Pekar S, Jocque R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS One 6:e21710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Bello F et al (2012) Functional species pool framework to test for biotic effects on community assembly. Ecology 93:2263–2273

    Article  PubMed  Google Scholar 

  • Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040

    PubMed  Google Scholar 

  • Dinnage R, Cadotte MW, Haddad NM, Crutsinger GM, Tilman D (2012) Diversity of plant evolutionary lineages promotes arthropod diversity. Ecol Lett 15:1308–1317

    Article  PubMed  Google Scholar 

  • Feld CK et al (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118:1862–1871

    Article  Google Scholar 

  • Finke DL, Snyder WE (2010) Conserving the benefits of predator biodiversity. Biol Conserv 143:2260–2269

    Article  Google Scholar 

  • Gerisch M, Agostinelli V, Henle K, Dziock F (2012) More species, but all do the same: contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121:508–515

    Article  Google Scholar 

  • Gotelli NJ, Rohde K (2002) Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecol Lett 5:86–94

    Article  Google Scholar 

  • Griffiths GJK, Wilby A, Crawley MJ, Thomas MB (2008) Density-dependent effects of predator species-richness in diversity-function studies. Ecology 89:2986–2993

    Article  Google Scholar 

  • Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039

    Article  PubMed  Google Scholar 

  • Hardy OJ (2008) Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. J Ecol 96:914–926

    Article  Google Scholar 

  • Hooper DU et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hooper DU et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    CAS  PubMed  Google Scholar 

  • Hurd LE, Fagan WF (1992) Cursorial spiders and succession: age or habitat structure? Oecologia 92:215–221

    Article  Google Scholar 

  • Jocqué R, Dippenaar-Schoeman AS (2007) Spider families of the world. Royal Museum for Central Africa, Tervuren

    Google Scholar 

  • Kremen C et al (2000) Economic incentives for rain forest conservation across scales. Science 288:1828–1832

    Article  CAS  PubMed  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Legendre P et al (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674

    Article  PubMed  Google Scholar 

  • Lewinsohn TM, Roslin T (2008) Four ways towards tropical herbivore megadiversity. Ecol Lett 11:398–416

    Article  PubMed  Google Scholar 

  • Lopez-Pujol J, Zhang F-M, Ge S (2006) Plant biodiversity in China: richly varied, endangered, and in need of conservation. Biodivers Conserv 15:3983–4026

    Article  Google Scholar 

  • Mallis RE, Hurd LE (2005) Diversity among ground-dwelling spider assemblages: habitat generalists and specialists. J Arachnol 33:101–109

    Article  Google Scholar 

  • Mason NWH, Irz P, Lanoiselee C, Mouillot D, Argillier C (2008) Evidence that niche specialization explains species-energy relationships in lake fish communities. J Anim Ecol 77:285–296

    Article  PubMed  Google Scholar 

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876

    Article  Google Scholar 

  • Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH (2011) Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One 6

  • Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406

    Article  CAS  PubMed  Google Scholar 

  • Niemelä J, Haila Y, Punttila P (1996) The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19:352–368

    Google Scholar 

  • Oxbrough A, Irwin S, Kelly TC, O’Halloran J (2010) Ground-dwelling invertebrates in reforested conifer plantations. For Ecol Manage 259:2111–2121

    Article  Google Scholar 

  • Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain community assembly: a unified approach. Biol Rev 86:792–812

    Article  CAS  PubMed  Google Scholar 

  • Purschke O et al (2013) Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes. J Ecol 101:857–866

    Article  Google Scholar 

  • Riihimäki J, Kaitaniemi P, Koricheva J, Vehviläinen H (2005) Testing the enemies hypothesis in forest stands: the important role of tree species composition. Oecologia 142:90–97

    Article  PubMed  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Scherber C et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556

    Article  CAS  PubMed  Google Scholar 

  • Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 80:469–484

    Article  Google Scholar 

  • Schmid B et al (2009) Consequences of species loss for ecosystem functioning: meta-analyses of data from biodiversity experiments. In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (eds) Biodiversity, ecosystem functioning, and human wellbeing. An ecological and economic perspective. Oxford Univ Press, Oxford, pp 14–29

    Chapter  Google Scholar 

  • Schmidt-Entling MH, Siegenthaler E (2009) Herbivore release through cascading risk effects. Biol Lett 5:773–776

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmitz OJ (2006) Predators have large effects on ecosystem properties by changing plant diversity, not plant biomass. Ecology 87:1432–1437

    Article  PubMed  Google Scholar 

  • Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88:2415–2426

    Article  PubMed  Google Scholar 

  • Schuldt A et al (2011) Predator diversity and abundance provide little support for the enemies hypothesis in forests of high tree diversity. PLoS One 6:e22905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuldt A, Bruelheide H, Härdtle W, Assmann T (2012) Predator assemblage structure and temporal variability of species richness and abundance in forests of high tree diversity. Biotropica 44:793–800

    Article  Google Scholar 

  • Southwood TRE, Henderson PA (2000) Ecological methods, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  • Stork NE, Grimbacher PS (2006) Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proc R Soc B 273:1969–1975

    Article  PubMed  Google Scholar 

  • Terborgh J (2012) Enemies maintain hyperdiverse tropical forests. Am Nat 179:303–314

    Article  PubMed  Google Scholar 

  • Uetz GW (1977) Coexistence in a guild of wandering spiders. J Anim Ecol 46:531–541

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Villéger S, Ramos Miranda J, Flores Hernandez D, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20:1512–1522

    Article  PubMed  Google Scholar 

  • Visser MD, Muller-Landau HC, Wright SJ, Rutten G, Jansen PA (2011) Tri-trophic interactions affect density dependence of seed fate in a tropical forest palm. Ecol Lett 14:1093–1100

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Wise DH (2004) Wandering spiders limit densities of a major microbi-detritivore in the forest-floor food web. Pedobiologia 48:181–188

    Article  Google Scholar 

  • Zhang YA, Adams J (2011) Top-down control of herbivores varies with ecosystem types. J Ecol 99:370–372

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We thank the administration of the Gutianshan National Nature Reserve and the BEF China team for their support. Data on basal area of trees were provided by Martin Baruffol and Martin Böhnke. We are grateful to Sabine Both and Alexandra Erfmeier for providing data on herb layer plant diversity. The comments of two anonymous reviewers helped to improve the manuscript. Funding by the German Research Foundation (DFG FOR 891) and the National Science Foundation of China (NSFC 30710103907 and 30930005) is gratefully acknowledged. O. P. acknowledges the support of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schuldt.

Additional information

Communicated by Sven Bacher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 698 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuldt, A., Bruelheide, H., Durka, W. et al. Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages. Oecologia 174, 533–543 (2014). https://doi.org/10.1007/s00442-013-2790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2790-9

Keywords

Profiles

  1. Walter Durka