Skip to main content
Log in

Life history traits associated with body size covary along a latitudinal gradient in a generalist grasshopper

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Animal body size often varies systematically along latitudinal gradients, where individuals are either larger or smaller with varying season length. This study examines ecotypic responses by the generalist grasshopper Melanoplus femurrubrum (Orthoptera: Acrididae) in body size and covarying, physiologically based life history traits along a latitudinal gradient with respect to seasonality and energetics. The latitudinal compensation hypothesis predicts that smaller body size occurs in colder sites when populations must compensate for time constraints due to short seasons. Shorter season length requires faster developmental and growth rates to complete life cycles in one season. Using a common garden experimental design under laboratory conditions, we examined how grasshopper body size, consumption, developmental time, growth rate and metabolism varied among populations collected along an extended latitudinal gradient. When reared at the same temperature in the lab, individuals from northern populations were smaller, developed more rapidly, and showed higher growth rates, as expected for adaptations to shorter and generally cooler growing seasons. Temperature-dependent, whole organism metabolic rate scaled positively with body size and was lower at northern sites, but mass-specific standard metabolic rate did not differ among sites. Total food consumption varied positively with body size, but northern populations exhibited a higher mass-specific consumption rate. Overall, compensatory life history responses corresponded with key predictions of the latitudinal compensation hypothesis in response to season length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alho JS, Herczeg G, Soderman F, Laurila A, Jonsson KI, Merila J (2010) Increasing melanism along a latitudinal gradient in a widespread amphibian: local adaptation, ontogenic or environmental plasticity? BMC Evol Biol 10:317

    Article  PubMed Central  PubMed  Google Scholar 

  • Angilletta MJJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, New York

    Book  Google Scholar 

  • Angilletta MJ, Sears MW, Steury TD (2003) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life history puzzle. Integr Comp Biol 44:498-509

    Google Scholar 

  • Arnett AE, Gotelli NJ (1999a) Bergmann’s rule in the ant lion Myrmeleon immaculatus DeGeer (Neuroptera: Myrmeleontidae): geographic variation in body size and heterozygosity. J Biogeogr 26:275–283

    Article  Google Scholar 

  • Arnett AE, Gotelli NJ (1999b) Geographic variation in life-history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann’s rule. Evolution 53:1180–1188

    Article  Google Scholar 

  • Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 12:235–239

    Article  CAS  PubMed  Google Scholar 

  • Ayres MP, Scriber JM (1994) Local adaptation to regional climates in Papilio canadensis (Lepidoptera, Papilionidae). Ecol Monogr 64:465–482

    Article  Google Scholar 

  • Bailey CG, Mukerji MK (1977) Energy dynamics of Melanoplus bivitattus and Melanoplus femurrubrum (Orthoptera Acrididae) in a grassland ecosystem. Can Entomol 109:605–614

    Article  Google Scholar 

  • Beckerman AP (2002) The distribution of Melanoplus femurrubrum: fear and freezing in Connecticut. Oikos 99:131–140

    Article  Google Scholar 

  • Behmer ST, Joern A (2008) Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc Natl Acad Sci 105:1977–1982

    Article  CAS  PubMed  Google Scholar 

  • Bidau CJ, Marti DA (2007a) Clinal variation of body size in Dichroplus pratensis (Orthoptera: Acrididae): inversion of Bergmann’s and Rensch’s rules. Ann Entomol Soc Am 100:850–860

    Article  Google Scholar 

  • Bidau CJ, Marti DA (2007b) Dichroplus vittatus (Orthoptera: Acrididae) follows the converse to Bergmann’s rule although male morphological variability increases with latitude. Bull Entomol Res 97:69–79

    Article  CAS  PubMed  Google Scholar 

  • Bidau CJ, Marti DA (2008) Geographic and climatic factors related to a body-size cline in Dichroplus pratensis Bruner, 1900 (Acrididae, Melanoplinae). J Orthoptera Res 17:149–156

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165-174

    Google Scholar 

  • Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424

    Article  CAS  PubMed  Google Scholar 

  • Branson DH (2004) Relative importance of nymphal and adult resource availability for reproductive allocation in Melanoplus sanguinipes (Orthoptera: Acrididae). J Orthoptera Res 13:239–245

    Article  Google Scholar 

  • Brose U (2010) Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct Ecol 24:28–34

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Calder WAI (1984) Size, function and life history. Harvard University Press, Cambridge

    Google Scholar 

  • Capinera JL, Scott RD, Walker TJ (2004) Field guide to grasshoppers, katydids, and crickets of the United States. Comstock, Ithaca

    Google Scholar 

  • Cease AJ, Hao S, Kang L, Elser JJ, Harrison JF (2010) Are color or high rearing density related to migratory polyphenism in the band-winged grasshopper, Oedaleus asiaticus? J Insect Physiol 56:926–936

    Article  CAS  PubMed  Google Scholar 

  • Chappell MA (1982) Metabolism and thermoregulation in desert and montane grasshoppers. Oecologia 56:126–131

    Article  Google Scholar 

  • Chappell MA, Whitman DA (1990) Grasshopper thermoregulation. In: Chapman RF, Joern A (eds) Biology of grasshoppers. Wiley Interscience, New York

    Google Scholar 

  • Chown SL, Gaston KJ (1999) Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biol Rev 74:87–120

    Article  Google Scholar 

  • Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169

    Article  PubMed  Google Scholar 

  • Chown SL, Klok CJ (2003) Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26:445–455

    Article  Google Scholar 

  • Chown SL, Nicolson SW (2004) Insect physiological ecology: mechanisms and patterns. Oxford University Press, New York

    Book  Google Scholar 

  • Clusella Trullas S, van Wyk JH, Spotila JR (2007) Thermal melanism in ectotherms. J Therm Biol 32:235–245

    Article  Google Scholar 

  • Conover DO, Present TMC (1990) Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia 83:316–324

    Google Scholar 

  • De Block M, Slos S, Johansson F, Stoks R (2008) Integrating life history and physiology to understand latitudinal size variation in a damselfly. Ecography 31:115–123

    Article  Google Scholar 

  • Dingle H, Mousseau TA (1994) Geographic-variation in embryonic-development time and stage of diapause in grasshopper. Oecologia 97:179–185

    Article  Google Scholar 

  • Dingle H, Mousseau TA, Scott SM (1990) Altitudinal variation in life cycle syndromes of California populations of the grasshopper, Melanoplus sanguinipes (F). Oecologia 84:199–206

    Google Scholar 

  • Fielding DJ, Defoliart LS (2005) Density and temperature-dependent melanization of fifth-instar Melanoplus sanguinipes: interpopulation comparisons. J Orthoptera Res 14:107–113

    Article  Google Scholar 

  • Fielding DJ, Defoliart LS (2007) Growth, development, and nutritional physiology of grasshoppers from subarctic and temperate regions. Physiol Biochem Zool 80:607–618

    Article  CAS  PubMed  Google Scholar 

  • Forsman A (1999) Variation in thermal sensitivity of performance among colour morphs of a pygmy grasshopper. J Evol Biol 12:869–878

    Article  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Grant A, Hassall M, Willott SJ (1993) An alternative theory of grasshopper life-cycles. Oikos 66:263–268

    Article  Google Scholar 

  • Hadley NF, Massion DD (1985) Oxygen consumption, water loss and cuticular lipids of high and low elevation populations of the grasshopper Aeropedellus clavatus (Orthoptera: Acrididae). Comp Biochem Physiol A 80A:307–311

    Article  CAS  Google Scholar 

  • Harrison JF, Fewell JH (1995) Thermal effects on feeding-behavior and net energy-intake in a grasshopper experiencing large diurnal fluctuations in body-temperature. Physiol Zool 68:453–473

    Google Scholar 

  • Ho CK, Pennings SC, Carefoot TH (2010) Is diet quality an overlooked mechanism for Bergmann’s rule? Am Nat 175:269–276

    Article  PubMed  Google Scholar 

  • Huston MA, Wolverton S (2011) Regulation of animal size by eNPP, Bergmann’s rule, and related phenomena. Ecol Monogr 81:349–405

    Article  Google Scholar 

  • Irlich UM, Terblanche JS, Blackburn TM, Chown SL (2009) Insect rate-temperature relationships: environmental variation and the metabolic theory of ecology. Am Nat 174:819–835

    Article  PubMed  Google Scholar 

  • Joern A (1981) Importance of behavior and coloration in the control of body-temperature by Brachystola magna Girard (Orthoptera, Acridiae). Acrida 10:117–130

    Google Scholar 

  • Kemp WP (1986) Thermoregulation in three rangeland grasshopper species. Can Entomol 118:335–343

    Article  Google Scholar 

  • Kivelä SM, Välimäki P, Carrasco D, Mäenpää MI, Oksanen J (2011) Latitudinal insect body size clines revisited: a critical evaluation of the saw-tooth model. J Anim Ecol 80:1184–1195

    Article  PubMed  Google Scholar 

  • Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, New York

    Book  Google Scholar 

  • Logan JD, Joern A, Wolesensky W (2003) Chemical reactor models of optimal digestion efficiency with constant foraging costs. Ecol Model 168:25–38

    Article  Google Scholar 

  • Masaki S (1967) Geographic variation and climatic adaptation in a field cricket (Orthoptera: Gryllidae). Evolution 21:725–741

    Article  Google Scholar 

  • Massion DD (1983) An altitudinal comparison of water and metabolic relations in two acridid grasshoppers (Orthoptera). Comp Biochem Physiol A 74A:101–105

    Article  Google Scholar 

  • Mousseau TA (1997) Ectotherms follow the converse to Bergmann’s rule. Evolution 51:630–632

    Article  Google Scholar 

  • Mousseau TA, Roff D (1989) Adaptation to seasonality in a cricket: patterns of phenotypic and genotypic variation in body size and diapause expression along a cline of season length. Evolution 43:1483–1496

    Article  Google Scholar 

  • Parsons SMA (2011) A generalist grasshopper species (Melanoplus femurrubrum) is adapted to variable environments along a latitudinal gradient. M.S. thesis. Division of Biology, Kansas State University, Manhattan

  • Present TMC, Conover DO (1992) Physiological basis of latitudinal growth differences in Menidia menidia: variation in consumption or efficiency? Funct Ecol 6:23–31

    Article  Google Scholar 

  • Raubenheimer D, Simpson SJ (1994) The analysis of nutrient budgets. Funct Ecol 8:783–791

    Article  Google Scholar 

  • Roff D (1980) Optimizing development time in a seasonal environment: the ups and downs of clinal variation. Oecologia 45:202–208

    Article  Google Scholar 

  • Roff D (1992) The evolution of life histories: theory and analysis. Chapman & Hall, New York

    Google Scholar 

  • Salgado CS, Pennings SC (2005) Latitudinal variation in palatability of salt-marsh plants: are differences constitutive? Ecology 86:1571–1579

    Article  Google Scholar 

  • Shelomi M (2012) Where are we now? Bergman’s rule sensu lato in insects. Am Nat 180:511–519

    Article  PubMed  Google Scholar 

  • Simpson SJ, Raubenheimer D (1993) A multilevel analysis of feeding-behavior: the geometry of nutritional decisions. Philos Trans R Soc Lond Ser B Biol Sci 342:381–402

    Article  Google Scholar 

  • Simpson SJ, Simpson CL (1989) The mechanisms of compensation by insect herbivores. In: Bernays EA (ed) Insect–plant interactions, vol 2. CRC, Boca Raton

    Google Scholar 

  • Terblanche JS, Chown SL (2010) Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae). J Insect Physiol 56:513–521

    Article  CAS  PubMed  Google Scholar 

  • Terblanche JS, Janion C, Chown SL (2007) Variation in scorpion metabolic rate and rate-temperature relationships: implications for the fundamental equation of the metabolic theory of ecology. J Evol Biol 20:1602–1612

    Article  CAS  PubMed  Google Scholar 

  • Thompson DB (1999) Genotype-environment interaction and the ontogeny of diet-induced phenotypic plasticity in size and shape of Melanoplus femurrubrum (Orthoptera: Acrididae). J Evol Biol 12:38–48

    Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, Chicago

    Google Scholar 

  • Vickery VR, Kevan DK McE (1986) The grasshoppers, crickets, and related insects of Canada and adjacent regions: Ulonata, Dermaptera, Cheleutoptera, Notoptera, Dictuoptera, Grylloptera, and Orthoptera. Biosystematics Research Institute, Ottawa

  • Whitman DW (2008) The significance of body size in the Orthoptera: a review. J Orthoptera Res 17:117–134

    Article  Google Scholar 

  • Willott SJ (1997) Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct Ecol 11:705–713

    Article  Google Scholar 

  • Woods HA, Kingsolver JG (1999) Feeding rate and the structure of protein digestion and absorption in lepidopteran midguts. Arch Insect Biochem Physiol 42:74–87

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Joern A (1994a) Compensatory feeding in response to variable food quality by Melanoplus differentialis. Physiol Entomol 19:75–82

    Article  CAS  Google Scholar 

  • Yang YL, Joern A (1994b) Influence of diet quality, developmental stage, and temperature on food residence time in the grasshopper Melanoplus differentialis. Physiol Zool 67:598–616

    Google Scholar 

  • Zera AJ, Harshman LG (2002) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126

    Article  Google Scholar 

Download references

Acknowledgments

A. N. Laws, W. K. Dodds and J. Reese kindly provided comments on the manuscript. We thank J. Nippert for assistance, T. Grace for discussions about spectral analysis, F. Dowell and E. Maghirang at the USDA-ARS Center for Grain and Animal Health Research for use of the spectrometer for spectral analysis, and C. Shannon for statistical advice. Comments by anonymous reviewers greatly improved the manuscript. This work was funded in-part by the Division of Biology, National Science Foundation (NSF) Long-Term Ecological Research, the Institute for Grassland Studies, and NSF DEB-0456522. This is Kansas Agricultural Experimental Station publication 14-096-J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Joern.

Additional information

Communicated by Roland A. Brandl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsons, S.M.A., Joern, A. Life history traits associated with body size covary along a latitudinal gradient in a generalist grasshopper. Oecologia 174, 379–391 (2014). https://doi.org/10.1007/s00442-013-2785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2785-6

Keywords

Navigation