Skip to main content

Moose body mass variation revisited: disentangling effects of environmental conditions and genetics

Abstract

Large-scale geographical variation in phenotypic traits within species is often correlated to local environmental conditions and population density. Such phenotypic variation has recently been shown to also be influenced by genetic structuring of populations. In ungulates, large-scale geographical variation in phenotypic traits, such as body mass, has been related to environmental conditions and population density, but little is known about the genetic influences. Research on the genetic structure of moose suggests two distinct genetic lineages in Norway, structured along a north-south gradient. This corresponds with many environmental gradients, thus genetic structuring provides an additional factor affecting geographical phenotypic variation in Norwegian moose. We investigated if genetic structure explained geographical variation in body mass in Norwegian moose while accounting for environmental conditions, age and sex, and if it captured some of the variance in body mass that previously was attributed to environmental factors. Genetic structuring of moose was the most important variable in explaining the geographic variation in body mass within age and sex classes. Several environmental variables also had strong explanatory power, related to habitat diversity, environmental seasonality and winter harshness. The results suggest that environmental conditions, landscape characteristics, and genetic structure should be evaluated together when explaining large-scale patterns in phenotypic characters or life history traits. However, to better understand the role of genetic and environmental effects on phenotypic traits in moose, an extended individual-based study of variation in fitness-related characters is needed, preferably in an area of convergence between different genetic lineages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3a–j
Fig. 4

References

  • Angilletta MJ, Niewiarowski PH, Dunham AE, Leache AD, Porter WP (2004) Bergmann’s clines in ectotherms: illustrating a life-history perspective with sceloporine lizards. Am Nat 164:E168–E183

    Article  Google Scholar 

  • Bjørneraas K, Solberg EJ, Herfindal I, Rolandsen CM, Tremblay JP, Sæther BE, Eriksen R, Astrup R (2011) Moose habitat use at multiple temporal scales in a human-altered landscape. Wildl Biol 17:44–54. doi:10.2981/10-073

    Article  Google Scholar 

  • Blackburn TM, Hawkins BA (2004) Bergmann’s rule and the mammal fauna of northern North America. Ecography 27:715–724

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174

    Article  Google Scholar 

  • Bø S, Hjeljord O (1991) Do continental moose ranges improve during cloudy summers. Can J Zool 69:1875–1879

    Article  Google Scholar 

  • Boyce MS (1979) Seasonality and patterns of natural selection for life histories. Am Nat 114:569–583

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New York

  • Capellini I, Gosling LM (2007) Habitat primary production and the evolution of body size within the hartebeest clade. Biol J Linn Soc 92:431–440. doi:10.1111/j.1095-8312.2007.00883.x

    Article  Google Scholar 

  • Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96

    Google Scholar 

  • Coltman DW, O’Donoghue P, Jorgenson JT, Hogg JT, Strobeck C, Festa-Bianchet M (2003) Undesirable evolutionary consequences of trophy hunting. Nature 426:655–658

    CAS  PubMed  Article  Google Scholar 

  • Coulson T, Tuljapurkar S (2008) The dynamics of a quantitative trait in an age-structured population living in a variable environment. Am Nat 172:599–612

    PubMed Central  PubMed  Article  Google Scholar 

  • Cromsigt JPGM, Prins HHT, Olff H (2009) Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: interaction of body mass and digestive strategy. Divers Distrib 15:513–522. doi:10.1111/j.1472-4642.2008.00554.x

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. doi:10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Ericsson G, Ball JP, Danell K (2002) Body mass of moose calves along an altitudinal gradient. J Wildl Manage 66:91–97

    Article  Google Scholar 

  • Fryxell JM, Wilmshurst JF, Sinclair ARE, Haydon DT, Holt RD, Abrams PA (2005) Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol Lett 8:328–335

    Article  Google Scholar 

  • Gaillard JM, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393

    Article  Google Scholar 

  • Gaillard JM, Hebblewhite M, Loison A, Fuller M, Powell R, Basille M, van Moorter B (2010) Habitat-performance relationships: finding the right metric at a given spatial scale. Philos Trans R Soc Lond B 365:2255–2265. doi:10.1098/rstb.2010.0085

    Article  Google Scholar 

  • Garel M, Solberg EJ, Sæther BE, Herfindal I, Høgda KA (2006) The length of growing season and adult sex ratio affect sexual size dimorphism in moose. Ecology 87:745–758

    PubMed  Article  Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    CAS  PubMed  Article  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815. doi:10.1890/02-3114

    Article  Google Scholar 

  • Grosbois V, Gimenez O, Gaillard JM, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (2008) Assessing the impact of climate variation on survival in vertebrate populations. Biol Rev 83:357–399

    CAS  PubMed  Article  Google Scholar 

  • Grøtan V, Sæther BE, Lillegård M, Solberg EJ, Engen S (2009) Geographical variation in the influence of density dependence and climate on the recruitment of Norwegian moose. Oecologia 161:685–695

    PubMed  Article  Google Scholar 

  • Haanes H, Røed KH, Solberg EJ, Herfindal I, Sæther BE (2011) Genetic discontinuities in a continuously distributed and highly mobile ungulate, the Norwegian moose. Conserv Genet 12:1131–1143. doi:10.1007/s10592-011-0214-0

    Article  Google Scholar 

  • Herfindal I, Sæther BE, Solberg EJ, Andersen R, Høgda KA (2006) Population characteristics predict responses in moose body mass to temporal variation in the environment. J Anim Ecol 75:1110–1118. doi:10.1111/j.1365-2656.2006.01138.x

    PubMed  Article  Google Scholar 

  • Herfindal I, Solberg EJ, Sæther BE, Høgda KA, Andersen R (2006) Environmental phenology and geographical gradients in moose body mass. Oecologia 150:213–224

    PubMed  Article  Google Scholar 

  • Hjeljord O, Histøl T (1999) Range-body mass interactions of a northern ungulate—a test of hypothesis. Oecologia 119:326–339

    Article  Google Scholar 

  • Illius AW, O’Connor TG (2000) Resource heterogeneity and ungulate population dynamics. Oikos 89:283–294

    Article  Google Scholar 

  • Johansen BE (2009) Vegetasjonskart for Norge basert på Landsat TM/ETM+ data. Norut Rapp 4(2009):1–87

    Google Scholar 

  • Jones PD, Strickland BK, Demarais S, Rude BJ, Edwards SL, Muir JP (2010) Soils and forage quality as predictors of white-tailed deer Odocoileus virginianus morphometrics. Wildl Biol 16:430–439. doi:10.2981/10-041

    Article  Google Scholar 

  • Karlsen SR, Elvebakk A, Høgda KA, Johansen B (2006) Satellite-based mapping of the growing season and bioclimatic zones in Fennoscandia. Glob Ecol Biogeogr 15:416–430

    Article  Google Scholar 

  • Klein DR (1970) Tundra ranges north of the boreal forest. J Range Manage 23:8–14

    Article  Google Scholar 

  • Kruuk LEB, Clutton-Brock TH, Slate J, Pemberton JM, Brotherstone S, Guinness FE (2000) Heritability of fitness in a wild mammal population. Proc Natl Acad Sci USA 97:698–703

    CAS  PubMed  Article  Google Scholar 

  • Lindstedt SL, Boyce MS (1985) Seasonality, fasting endurance, and body size in mammals. Am Nat 125:873–878

    Article  Google Scholar 

  • Loison A, Langvatn R (1998) Short- and long-term effects of winter and spring weather on growth and survival of red deer in Norway. Oecologia 116:489–500

    Article  Google Scholar 

  • Lynch M, Pfrender M, Spitze K, Lehman N, Hicks J, Allen D, Latta L, Ottene M, Bogue F, Colbourne J (1999) The quantitative and molecular genetic architecture of a subdivided species. Evolution 53:100–110

    Article  Google Scholar 

  • Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671

    Article  Google Scholar 

  • McNab BK (1971) On the ecological significance of Bergmann’s rule. Ecology 52:845–854

    Article  Google Scholar 

  • Melis C, Basille M, Herfindal I, Linnell JDC, Odden J, Gaillard JM, Høgda KA, Andersen R (2010) Roe deer population growth and lynx predation along a gradient of environmental productivity and climate in Norway. Ecoscience 17:166–174

    Article  Google Scholar 

  • Merilä J, Sheldon BC, Kruuk LEB (2001) Explaining stasis: microevolutionary studies in natural populations. Genetica 112:199–222

    PubMed  Article  Google Scholar 

  • Moe T, Solberg EJ, Herfindal I, Sæther BE, Bjørneraas K, Heim M (2009) Sex ratio variation in harvested moose (Alces alces) calves: does it reflect population calf sex ratio or selective hunting. Eur J Wildl Res 55:217–226

    Article  Google Scholar 

  • Moen A (1999) National atlas of Norway: vegetaton. Norwegian Mapping Authority, Hønefoss, Norway

    Google Scholar 

  • Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2001) Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography. J Anim Ecol 70:915–923

    Article  Google Scholar 

  • Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2002) Large-scale habitat variability, delayed density effects and red deer populations in Norway. J Anim Ecol 71:569–580

    Article  Google Scholar 

  • Nilsen EB, Solberg EJ (2006) Patterns of hunting mortality in Norwegian moose (Alces alces) populations. Eur J Wildl Res 52:153–163. doi:10.1007/s10344-005-0023-1

    Article  Google Scholar 

  • Ozgul A, Tuljapurkar S, Benton TG, Pemberton JM, Clutton-Brock TH, Coulson T (2009) The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325:464–467. doi:10.1126/science.1173668

    CAS  PubMed  Article  Google Scholar 

  • Pelletier F, Clutton-Brock T, Pemberton J, Tuljapurkar S, Coulson T (2007) The evolutionary demography of ecological change: linking trait variation and population growth. Science 315:1571–1574

    CAS  PubMed  Article  Google Scholar 

  • Pemberton JM (2010) Evolution of quantitative traits in the wild: mind the ecology. Philos Trans R Soc Lond B 365:2431–2438

    Article  Google Scholar 

  • Pinzon J, Brown ME, Tucker CJ (2005) Satellite time series correction of orbital drift artifacts using empirical mode decomposition. In: Huang N (ed) Hilbert–Huang transform: introduction and applications. World Scientific pp 167–186

  • R Development Core Team (2012) R: a language and environment for statistical computing. http://www.R-project.org/

  • Réale D, McAdam AG, Boutin S, Berteaux D (2003) Genetic and plastic responses of a northern mammal to climate change. Proc R Soc Lond B 270:591–596

    Article  Google Scholar 

  • Romano A, Ficetola GF (2010) Ecogeographic variation of body size in the spectacled salamanders (Salamandrina): influence of genetic structure and local factors. J Biogeogr 37:2358–2370. doi:10.1111/j.1365-2699.2010.02369.x

    Article  Google Scholar 

  • Rönnegård L, Danell Ö (2003) Genetic response to selection on reindeer calf weights. Rangifer 23:13–20

    Article  Google Scholar 

  • Sæther BE (1985) Annual variation in carcass weight of Norwegian moose in relation to climate along a latitudinal gradient. J Wildl Manage 49:977–983

    Article  Google Scholar 

  • Sæther BE (1997) Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends Ecol Evol 12:143–149

    PubMed  Article  Google Scholar 

  • Sæther BE, Haagenrud H (1985) Geographical variation in body weight and sexual size-dimorphism of Norwegian moose (Alces alces). J Zool 206:83–96

    Article  Google Scholar 

  • Sæther BE, Andersen R, Hjeljord O, Heim M (1996) Ecological correlates of regional variation in life history of the moose Alces alces. Ecology 77:1493–1500

    Article  Google Scholar 

  • Sand H, Cederlund G, Danell K (1995) Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102:433–442

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Solberg EJ, Loison A, Gaillard JM, Heim M (2004) Lasting effects of conditions at birth on moose body mass. Ecography 27:677–687

    Article  Google Scholar 

  • Solberg EJ, Garel M, Heim M, Grøtan V, Sæther BE (2008) Lack of compensatory body growth in a high performance moose Alces alces population. Oecologia 158:485–498

    PubMed  Article  Google Scholar 

  • Steinheim G, Ødegård J, Ådnøy T, Klemetsdal G (2008) Genotype by environment interaction for lamb weaning weight in two Norwegian sheep breeds. J Anim Sci 86:33–39. doi:10.2527/jas.2007-0031

    CAS  PubMed  Article  Google Scholar 

  • Stillwell RC (2010) Are latitudinal clines in body size adaptive. Oikos 119:1387–1390. doi:10.1111/j.1600-0706.2010.18670.x

    Article  Google Scholar 

  • Terada C, Tatsuzawa S, Saitoh T (2012) Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169:981–994. doi:10.1007/s00442-012-2270-7

    PubMed  Article  Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback D, Pak EW, Mahoney R, Vermote E, El Saleous N (2005) An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498

    Article  Google Scholar 

  • Walsh C, Mac Nally R (2008) hier.part: hierarchical partitioning. R package version 1.0-3

  • Wang G, Hobbs NT, Boone RB, Illius AW, Gordon IJ, Gross JE, Hamlin KL (2006) Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87:95–102

    PubMed  Article  Google Scholar 

  • Wang G, Hobbs NT, Twombly S, Boone RB, Illius AW, Gordon IJ, Gross JE (2009) Density dependence in northern ungulates: interactions with predation and resources. Popul Ecol 51:123–132

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Global Land Cover Facility (http://www.landcover.org) for making the GIMMS NDVI data available. The project was funded by the Research Council of Norway (Fribio 196304/V40), the European Research Council (ERC-2010-AdG 268562), and the Norwegian Directorate for Nature Management. I. H. also received funding from project NFR no. 215647 (Forestry and Ungulates). The manuscript was improved by comments from two anonymous reviewers and J. M. Gaillard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivar Herfindal.

Additional information

Communicated by Jean-Michel Gaillard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herfindal, I., Haanes, H., Solberg, E.J. et al. Moose body mass variation revisited: disentangling effects of environmental conditions and genetics. Oecologia 174, 447–458 (2014). https://doi.org/10.1007/s00442-013-2783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2783-8

Keywords

  • Alces alces
  • Body mass
  • Bergmann’s rule
  • Climate effects
  • Environmental conditions