, Volume 174, Issue 2, pp 447–458 | Cite as

Moose body mass variation revisited: disentangling effects of environmental conditions and genetics

  • Ivar Herfindal
  • Hallvard Haanes
  • Erling J. Solberg
  • Knut H. Røed
  • Kjell Arild Høgda
  • Bernt-Erik Sæther
Population ecology - Original research


Large-scale geographical variation in phenotypic traits within species is often correlated to local environmental conditions and population density. Such phenotypic variation has recently been shown to also be influenced by genetic structuring of populations. In ungulates, large-scale geographical variation in phenotypic traits, such as body mass, has been related to environmental conditions and population density, but little is known about the genetic influences. Research on the genetic structure of moose suggests two distinct genetic lineages in Norway, structured along a north-south gradient. This corresponds with many environmental gradients, thus genetic structuring provides an additional factor affecting geographical phenotypic variation in Norwegian moose. We investigated if genetic structure explained geographical variation in body mass in Norwegian moose while accounting for environmental conditions, age and sex, and if it captured some of the variance in body mass that previously was attributed to environmental factors. Genetic structuring of moose was the most important variable in explaining the geographic variation in body mass within age and sex classes. Several environmental variables also had strong explanatory power, related to habitat diversity, environmental seasonality and winter harshness. The results suggest that environmental conditions, landscape characteristics, and genetic structure should be evaluated together when explaining large-scale patterns in phenotypic characters or life history traits. However, to better understand the role of genetic and environmental effects on phenotypic traits in moose, an extended individual-based study of variation in fitness-related characters is needed, preferably in an area of convergence between different genetic lineages.


Alces alces Body mass Bergmann’s rule Climate effects Environmental conditions 


  1. Angilletta MJ, Niewiarowski PH, Dunham AE, Leache AD, Porter WP (2004) Bergmann’s clines in ectotherms: illustrating a life-history perspective with sceloporine lizards. Am Nat 164:E168–E183CrossRefGoogle Scholar
  2. Bjørneraas K, Solberg EJ, Herfindal I, Rolandsen CM, Tremblay JP, Sæther BE, Eriksen R, Astrup R (2011) Moose habitat use at multiple temporal scales in a human-altered landscape. Wildl Biol 17:44–54. doi:10.2981/10-073 CrossRefGoogle Scholar
  3. Blackburn TM, Hawkins BA (2004) Bergmann’s rule and the mammal fauna of northern North America. Ecography 27:715–724CrossRefGoogle Scholar
  4. Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174CrossRefGoogle Scholar
  5. Bø S, Hjeljord O (1991) Do continental moose ranges improve during cloudy summers. Can J Zool 69:1875–1879CrossRefGoogle Scholar
  6. Boyce MS (1979) Seasonality and patterns of natural selection for life histories. Am Nat 114:569–583CrossRefGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  8. Capellini I, Gosling LM (2007) Habitat primary production and the evolution of body size within the hartebeest clade. Biol J Linn Soc 92:431–440. doi:10.1111/j.1095-8312.2007.00883.x CrossRefGoogle Scholar
  9. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96Google Scholar
  10. Coltman DW, O’Donoghue P, Jorgenson JT, Hogg JT, Strobeck C, Festa-Bianchet M (2003) Undesirable evolutionary consequences of trophy hunting. Nature 426:655–658PubMedCrossRefGoogle Scholar
  11. Coulson T, Tuljapurkar S (2008) The dynamics of a quantitative trait in an age-structured population living in a variable environment. Am Nat 172:599–612PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cromsigt JPGM, Prins HHT, Olff H (2009) Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: interaction of body mass and digestive strategy. Divers Distrib 15:513–522. doi:10.1111/j.1472-4642.2008.00554.x CrossRefGoogle Scholar
  13. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. doi:10.1111/j.1600-0587.2012.07348.x CrossRefGoogle Scholar
  14. Ericsson G, Ball JP, Danell K (2002) Body mass of moose calves along an altitudinal gradient. J Wildl Manage 66:91–97CrossRefGoogle Scholar
  15. Fryxell JM, Wilmshurst JF, Sinclair ARE, Haydon DT, Holt RD, Abrams PA (2005) Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol Lett 8:328–335CrossRefGoogle Scholar
  16. Gaillard JM, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393CrossRefGoogle Scholar
  17. Gaillard JM, Hebblewhite M, Loison A, Fuller M, Powell R, Basille M, van Moorter B (2010) Habitat-performance relationships: finding the right metric at a given spatial scale. Philos Trans R Soc Lond B 365:2255–2265. doi:10.1098/rstb.2010.0085 CrossRefGoogle Scholar
  18. Garel M, Solberg EJ, Sæther BE, Herfindal I, Høgda KA (2006) The length of growing season and adult sex ratio affect sexual size dimorphism in moose. Ecology 87:745–758PubMedCrossRefGoogle Scholar
  19. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178PubMedCrossRefGoogle Scholar
  20. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815. doi:10.1890/02-3114 CrossRefGoogle Scholar
  21. Grosbois V, Gimenez O, Gaillard JM, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (2008) Assessing the impact of climate variation on survival in vertebrate populations. Biol Rev 83:357–399PubMedCrossRefGoogle Scholar
  22. Grøtan V, Sæther BE, Lillegård M, Solberg EJ, Engen S (2009) Geographical variation in the influence of density dependence and climate on the recruitment of Norwegian moose. Oecologia 161:685–695PubMedCrossRefGoogle Scholar
  23. Haanes H, Røed KH, Solberg EJ, Herfindal I, Sæther BE (2011) Genetic discontinuities in a continuously distributed and highly mobile ungulate, the Norwegian moose. Conserv Genet 12:1131–1143. doi:10.1007/s10592-011-0214-0 CrossRefGoogle Scholar
  24. Herfindal I, Sæther BE, Solberg EJ, Andersen R, Høgda KA (2006) Population characteristics predict responses in moose body mass to temporal variation in the environment. J Anim Ecol 75:1110–1118. doi:10.1111/j.1365-2656.2006.01138.x PubMedCrossRefGoogle Scholar
  25. Herfindal I, Solberg EJ, Sæther BE, Høgda KA, Andersen R (2006) Environmental phenology and geographical gradients in moose body mass. Oecologia 150:213–224PubMedCrossRefGoogle Scholar
  26. Hjeljord O, Histøl T (1999) Range-body mass interactions of a northern ungulate—a test of hypothesis. Oecologia 119:326–339CrossRefGoogle Scholar
  27. Illius AW, O’Connor TG (2000) Resource heterogeneity and ungulate population dynamics. Oikos 89:283–294CrossRefGoogle Scholar
  28. Johansen BE (2009) Vegetasjonskart for Norge basert på Landsat TM/ETM+ data. Norut Rapp 4(2009):1–87Google Scholar
  29. Jones PD, Strickland BK, Demarais S, Rude BJ, Edwards SL, Muir JP (2010) Soils and forage quality as predictors of white-tailed deer Odocoileus virginianus morphometrics. Wildl Biol 16:430–439. doi:10.2981/10-041 CrossRefGoogle Scholar
  30. Karlsen SR, Elvebakk A, Høgda KA, Johansen B (2006) Satellite-based mapping of the growing season and bioclimatic zones in Fennoscandia. Glob Ecol Biogeogr 15:416–430CrossRefGoogle Scholar
  31. Klein DR (1970) Tundra ranges north of the boreal forest. J Range Manage 23:8–14CrossRefGoogle Scholar
  32. Kruuk LEB, Clutton-Brock TH, Slate J, Pemberton JM, Brotherstone S, Guinness FE (2000) Heritability of fitness in a wild mammal population. Proc Natl Acad Sci USA 97:698–703PubMedCrossRefGoogle Scholar
  33. Lindstedt SL, Boyce MS (1985) Seasonality, fasting endurance, and body size in mammals. Am Nat 125:873–878CrossRefGoogle Scholar
  34. Loison A, Langvatn R (1998) Short- and long-term effects of winter and spring weather on growth and survival of red deer in Norway. Oecologia 116:489–500CrossRefGoogle Scholar
  35. Lynch M, Pfrender M, Spitze K, Lehman N, Hicks J, Allen D, Latta L, Ottene M, Bogue F, Colbourne J (1999) The quantitative and molecular genetic architecture of a subdivided species. Evolution 53:100–110CrossRefGoogle Scholar
  36. Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671CrossRefGoogle Scholar
  37. McNab BK (1971) On the ecological significance of Bergmann’s rule. Ecology 52:845–854CrossRefGoogle Scholar
  38. Melis C, Basille M, Herfindal I, Linnell JDC, Odden J, Gaillard JM, Høgda KA, Andersen R (2010) Roe deer population growth and lynx predation along a gradient of environmental productivity and climate in Norway. Ecoscience 17:166–174CrossRefGoogle Scholar
  39. Merilä J, Sheldon BC, Kruuk LEB (2001) Explaining stasis: microevolutionary studies in natural populations. Genetica 112:199–222PubMedCrossRefGoogle Scholar
  40. Moe T, Solberg EJ, Herfindal I, Sæther BE, Bjørneraas K, Heim M (2009) Sex ratio variation in harvested moose (Alces alces) calves: does it reflect population calf sex ratio or selective hunting. Eur J Wildl Res 55:217–226CrossRefGoogle Scholar
  41. Moen A (1999) National atlas of Norway: vegetaton. Norwegian Mapping Authority, Hønefoss, NorwayGoogle Scholar
  42. Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2001) Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography. J Anim Ecol 70:915–923CrossRefGoogle Scholar
  43. Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2002) Large-scale habitat variability, delayed density effects and red deer populations in Norway. J Anim Ecol 71:569–580CrossRefGoogle Scholar
  44. Nilsen EB, Solberg EJ (2006) Patterns of hunting mortality in Norwegian moose (Alces alces) populations. Eur J Wildl Res 52:153–163. doi:10.1007/s10344-005-0023-1 CrossRefGoogle Scholar
  45. Ozgul A, Tuljapurkar S, Benton TG, Pemberton JM, Clutton-Brock TH, Coulson T (2009) The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325:464–467. doi:10.1126/science.1173668 PubMedCrossRefGoogle Scholar
  46. Pelletier F, Clutton-Brock T, Pemberton J, Tuljapurkar S, Coulson T (2007) The evolutionary demography of ecological change: linking trait variation and population growth. Science 315:1571–1574PubMedCrossRefGoogle Scholar
  47. Pemberton JM (2010) Evolution of quantitative traits in the wild: mind the ecology. Philos Trans R Soc Lond B 365:2431–2438CrossRefGoogle Scholar
  48. Pinzon J, Brown ME, Tucker CJ (2005) Satellite time series correction of orbital drift artifacts using empirical mode decomposition. In: Huang N (ed) Hilbert–Huang transform: introduction and applications. World Scientific pp 167–186Google Scholar
  49. R Development Core Team (2012) R: a language and environment for statistical computing. http://www.R-project.org/
  50. Réale D, McAdam AG, Boutin S, Berteaux D (2003) Genetic and plastic responses of a northern mammal to climate change. Proc R Soc Lond B 270:591–596CrossRefGoogle Scholar
  51. Romano A, Ficetola GF (2010) Ecogeographic variation of body size in the spectacled salamanders (Salamandrina): influence of genetic structure and local factors. J Biogeogr 37:2358–2370. doi:10.1111/j.1365-2699.2010.02369.x CrossRefGoogle Scholar
  52. Rönnegård L, Danell Ö (2003) Genetic response to selection on reindeer calf weights. Rangifer 23:13–20CrossRefGoogle Scholar
  53. Sæther BE (1985) Annual variation in carcass weight of Norwegian moose in relation to climate along a latitudinal gradient. J Wildl Manage 49:977–983CrossRefGoogle Scholar
  54. Sæther BE (1997) Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends Ecol Evol 12:143–149PubMedCrossRefGoogle Scholar
  55. Sæther BE, Haagenrud H (1985) Geographical variation in body weight and sexual size-dimorphism of Norwegian moose (Alces alces). J Zool 206:83–96CrossRefGoogle Scholar
  56. Sæther BE, Andersen R, Hjeljord O, Heim M (1996) Ecological correlates of regional variation in life history of the moose Alces alces. Ecology 77:1493–1500CrossRefGoogle Scholar
  57. Sand H, Cederlund G, Danell K (1995) Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102:433–442CrossRefGoogle Scholar
  58. Simpson EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  59. Solberg EJ, Loison A, Gaillard JM, Heim M (2004) Lasting effects of conditions at birth on moose body mass. Ecography 27:677–687CrossRefGoogle Scholar
  60. Solberg EJ, Garel M, Heim M, Grøtan V, Sæther BE (2008) Lack of compensatory body growth in a high performance moose Alces alces population. Oecologia 158:485–498PubMedCrossRefGoogle Scholar
  61. Steinheim G, Ødegård J, Ådnøy T, Klemetsdal G (2008) Genotype by environment interaction for lamb weaning weight in two Norwegian sheep breeds. J Anim Sci 86:33–39. doi:10.2527/jas.2007-0031 PubMedCrossRefGoogle Scholar
  62. Stillwell RC (2010) Are latitudinal clines in body size adaptive. Oikos 119:1387–1390. doi:10.1111/j.1600-0706.2010.18670.x CrossRefGoogle Scholar
  63. Terada C, Tatsuzawa S, Saitoh T (2012) Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169:981–994. doi:10.1007/s00442-012-2270-7 PubMedCrossRefGoogle Scholar
  64. Tucker CJ, Pinzon JE, Brown ME, Slayback D, Pak EW, Mahoney R, Vermote E, El Saleous N (2005) An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498CrossRefGoogle Scholar
  65. Walsh C, Mac Nally R (2008) hier.part: hierarchical partitioning. R package version 1.0-3Google Scholar
  66. Wang G, Hobbs NT, Boone RB, Illius AW, Gordon IJ, Gross JE, Hamlin KL (2006) Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87:95–102PubMedCrossRefGoogle Scholar
  67. Wang G, Hobbs NT, Twombly S, Boone RB, Illius AW, Gordon IJ, Gross JE (2009) Density dependence in northern ungulates: interactions with predation and resources. Popul Ecol 51:123–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ivar Herfindal
    • 1
  • Hallvard Haanes
    • 1
    • 3
  • Erling J. Solberg
    • 2
  • Knut H. Røed
    • 3
  • Kjell Arild Høgda
    • 4
  • Bernt-Erik Sæther
    • 1
  1. 1.Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Norwegian Institute for Nature ResearchTrondheimNorway
  3. 3.Department of Basic Sciences and Aquatic MedicineNorwegian School of Veterinary ScienceOsloNorway
  4. 4.NorutTromsNorway

Personalised recommendations