Skip to main content

Advertisement

Log in

Additive effects of exotic plant abundance and land-use intensity on plant–pollinator interactions

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The continuing spread of exotic plants and increasing human land-use are two major drivers of global change threatening ecosystems, species and their interactions. Separate effects of these two drivers on plant–pollinator interactions have been thoroughly studied, but we still lack an understanding of combined and potential interactive effects. In a subtropical South African landscape, we studied 17 plant–pollinator networks along two gradients of relative abundance of exotics and land-use intensity. In general, pollinator visitation rates were lower on exotic plants than on native ones. Surprisingly, while visitation rates on native plants increased with relative abundance of exotics and land-use intensity, pollinator visitation on exotic plants decreased along the same gradients. There was a decrease in the specialization of plants on pollinators and vice versa with both drivers, regardless of plant origin. Decreases in pollinator specialization thereby seemed to be mediated by a species turnover towards habitat generalists. However, contrary to expectations, we detected no interactive effects between the two drivers. Our results suggest that exotic plants and land-use promote generalist plants and pollinators, while negatively affecting specialized plant–pollinator interactions. Weak integration and high specialization of exotic plants may have prevented interactive effects between exotic plants and land-use. Still, the additive effects of exotic plants and land-use on specialized plant–pollinator interactions would have been overlooked in a single-factor study. We therefore highlight the need to consider multiple drivers of global change in ecological research and conservation management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    Article  PubMed  Google Scholar 

  • Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6:1–8

    Article  Google Scholar 

  • Aizen MA, Sabatino M, Tylianakis JM (2012) Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335:1486–1489

    Article  PubMed  CAS  Google Scholar 

  • Albrecht M, Schmid B, Hautier Y, Müller CB (2012) Diverse pollinator communities enhance plant reproductive success. Proc R Soc B 279:4845–4852

    Article  PubMed  Google Scholar 

  • Baayen RH (2011) languageR: data sets and functions with “Analyzing linguistic data: a practical introduction to statistics”. R package version 1.4

  • Bartomeus I, Vilà M, Steffan-Dewenter I (2010) Combined effects of Impatiens glandulifera invasion and landscape structure on native plant pollination. J Ecol 98:440–450

    Article  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) lme4: linear mixed-effects models using S4 classes: R package version 0.999999-0. Available at: http://cran.R-project.org/package=lme4.

  • Bernhardt P (1987) A comparison of the diversity, density, and foraging behavior of bees and wasps on Australian Acacia. Ann Mo Bot Gard 74:42–50

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  PubMed  CAS  Google Scholar 

  • Bjerknes A-L, Totland Ø, Hegland SJ, Nielsen A (2007) Do alien plant invasions really affect pollination success in native plant species? Biol Conserv 138:1–12

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Blüthgen N (2010) Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic Appl Ecol 11:185–195

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    Article  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Boon R (2010) Pooley’s trees of eastern South Africa, 2nd edn. Flora and Fauna Publications Trust, Durban

    Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Brosi BJ, Daily GC, Shih TM, Oviedo F, Durán G (2008) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45:773–783

    Article  Google Scholar 

  • Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809

    Article  Google Scholar 

  • Cairns CE, Villanueva-Gutiérrez R, Koptur S, Bray DB (2005) Bee populations, forest disturbance, and africanization in Mexico. Biotropica 37:686–692

    Article  Google Scholar 

  • Cooper KH (1985) The conservation status of indigenous forests in Transvaal, Natal and OFS, South Africa. Wildlife Society of Southern Africa, Durban

    Google Scholar 

  • Dicks LV, Corbet SA, Pywell RF (2002) Compartmentalization in plant-insect flower visitor webs. J Anim Ecol 71:32–43

    Article  Google Scholar 

  • Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:489–496

    Article  PubMed  Google Scholar 

  • Dietzsch AC, Stanley DA, Stout JC (2011) Relative abundance of an invasive alien plant affects native pollination processes. Oecologia 167:469–479

    Article  PubMed  Google Scholar 

  • Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24

    Article  Google Scholar 

  • Dray S, Legendre P, Blanchet FG (2011) packfor: forward selection with permutation (Canoco p.46). R package version 0.0-8/r100. Available at: http://R-Forge.R-project.org/projects/sedar

  • Eeley HAC, Lawes MJ, Reyers B (2001) Priority areas for the conservation of subtropical indigenous forest in southern Africa: a case study from KwaZulu-Natal. Biodivers Conserv 10:1221–1246

    Article  Google Scholar 

  • Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:e1. doi:10.1371/journal.pbio.0040001

    Article  PubMed  Google Scholar 

  • Fontaine C, Collin CL, Dajoz I (2008) Generalist foraging of pollinators: diet expansion at high density. J Ecol 96:1002–1010

    Article  Google Scholar 

  • Ghazoul J (2004) Alien abduction: disruption of native plant–pollinator interactions by invasive species. Biotropica 36:156–164

    Google Scholar 

  • Goulson D, Derwent LC (2004) Synergistic interactions between an exotic honeybee and an exotic weed: pollination of Lantana camara in Australia. Weed Res 44:195–202

    Article  Google Scholar 

  • Hagen M, Kraemer M (2010) Agricultural surroundings support flower–visitor networks in an afrotropical rain forest. Biol Conserv 143:1654–1663

    Article  Google Scholar 

  • Henderson L (2007) Invasive, naturalized and casual alien plants in southern Africa: a summary based on the Southern African Plant Invaders Atlas (SAPIA). Bothalia 37:215–248

    Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    Article  PubMed  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816

    Article  PubMed  CAS  Google Scholar 

  • Lawes MJ (1990) The distribution of the samango monkey (Cercopithecus mitis erythrarchus Peters, 1852 and Cercopithecus mitis labiatus I. Geoffroy, 1843) and forest history in Southern Africa. J Biogeogr 17:669–680

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609

    Article  Google Scholar 

  • Memmott J, Waser NM (2002) Integration of alien plants into a native flower-pollinator visitation web. Proc R Soc B 269:2395–2399

    Article  PubMed  Google Scholar 

  • Montero-Castaño A, Vilà M (2012) Impact of landscape alteration and invasions on pollinators: a meta-analysis. J Ecol 100:884–893

    Article  Google Scholar 

  • Moragues E, Traveset A (2005) Effect of Carpobrotus spp. on the pollination success of native plant species of the Balearic Islands. Biol Conserv 122:611–619

    Article  Google Scholar 

  • Morales CL, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett 12:716–728

    Article  PubMed  Google Scholar 

  • Neuschulz EL, Grass I, Botzat A, Johnson SD, Farwig N (2013) Persistence of flower visitors and pollination services of a generalist tree in modified forests. Austral Ecol. doi:10.1111/j.1442-9993.2012.02417.x

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) vegan: community ecology package. R package version 2.0–2. Available at: http://vegan.r-forge.r-project.org/

  • Olesen JM, Eskildsen LI, Venkatasamy S (2002) Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Divers Distrib 8:181–192

    Article  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Pauw A, Hawkins JA (2011) Reconstruction of historic pollination rates reveals linked declines of pollinators and plants. Oikos 120:344–349

    Article  Google Scholar 

  • Picker M, Griffiths CL, Weaving A (2004) Field guide to insects of South Africa, 2nd edn. Struik, Cape Town

    Google Scholar 

  • Pooley E (1998) A field guide to wild flowers: KwaZulu-Natal and the eastern region, 1st edn. Natal Flora Publications Trust, Durban

    Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Google Scholar 

  • Pyšek P, Hulme PE (2005) Spatio-temporal dynamics of plant invasions: linking pattern to process. Ecoscience 12:302–315

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R,Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A,Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL,Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Scholtz C, Holm E (2008) Insects of southern Africa, 2nd edn. Protea Boekhuis, Pretoria

    Google Scholar 

  • Stang M, Klinkhamer PGL, Meijden EVD (2006) Size constraints and flower abundance determine the number of interactions in a plant-flower visitor web. Oikos 112:111–121

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279

    Article  Google Scholar 

  • Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094

    Article  Google Scholar 

  • Vilà M, Bartomeus I, Dietzsch AC, Petanidou T, Steffan-Dewenter I, Stout JC, Tscheulin T (2009) Invasive plant integration into native plant–pollinator networks across Europe. Proc R Soc B 276:3887–3893

    Article  PubMed  Google Scholar 

  • von Maltitz G (2003) Classification system for South African indigenous forests: an objective classification for the Department of Water Affairs and Forestry. Environmentek report ENV-P-C 2003-017, CSIR, Pretoria

  • Ezemvelo KZN Wildlife (2011) KwaZulu-Natal land cover 2008 V1.1. Unpublished GIS coverage. Biodiversity Conservation Planning Division, Ezemvelo KZN Wildlife, Cascades, Pietermaritzburg

  • Williams NM, Cariveau D, Winfree R, Kremen C (2011) Bees in disturbed habitats use, but do not prefer, alien plants. Basic Appl Ecol 12:332–341

    Article  Google Scholar 

  • Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223

    Article  PubMed  Google Scholar 

  • Winfree R, Aguilar R, LeBuhn G (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076

    Article  PubMed  Google Scholar 

  • Woodhall S (2005) Field guide to butterflies of South Africa, 1st edn. Struik, Cape Town

    Google Scholar 

  • Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ezemvelo KZN Wildlife for permission to work within the Oribi Gorge Nature Reserve, and all South African farmers who granted us access to their land. We are grateful to S.-L. Steenhuisen and S. Johnson for providing advice and field equipment, and to H. and M. Neethling, P. Pillay and F. Voigt for their manifold support. We thank J. Albrecht for valuable discussions on the statistical analyses, and R. Brandl, K. Fiedler and two anonymous reviewers for insightful comments that substantially improved the manuscript. Funding was provided by the Robert Bosch Stiftung. Field work complied with the current laws of the Republic of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Grass.

Additional information

Communicated by Roland Brandl.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grass, I., Berens, D.G., Peter, F. et al. Additive effects of exotic plant abundance and land-use intensity on plant–pollinator interactions. Oecologia 173, 913–923 (2013). https://doi.org/10.1007/s00442-013-2688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2688-6

Keywords

Navigation