, Volume 173, Issue 2, pp 421–430 | Cite as

Clinal variation for only some phenological traits across a species range

  • Holly R. Prendeville
  • Karen Barnard-Kubow
  • Can Dai
  • Brian C. Barringer
  • Laura F. Galloway
Population ecology - Original research


Phenology is the timing of life cycle events of an organism. Alterations in phenology can have profound effects on individual fitness, population growth, and community dynamics. Recent changes in climate have altered the phenology of many organisms, which may result in selection to shift phenological traits. Understanding the relationship between local climates and population differentiation in phenology will allow us to anticipate responses to novel selective environments caused by global climate change. We evaluated population differentiation in the number of days to germination, first flower, and fruit maturation for 33 populations throughout the range of Campanulastrum americanum (American Bellflower). Germination and fruit maturation had geographical clines with earlier timing in populations from northern latitudes. Northern sites were cooler and drier, suggesting potential adaptive differentiation of the shorter life cycle associated with earlier phenology. Similarly, higher elevations were cooler and had earlier fruit maturation. However, seed germination was later in higher elevation populations. Although there was substantial variation in the day to first flower, ranging 40 days between population means, it was idiosyncratic and not related to latitude, suggesting differentiation in response to selective factors distinct from those on germination and fruit maturation. Thus, germination and fruit maturation in C. americanum may shift in response to selection by rising temperatures. However, such changes are not expected for flowering time, a typical indicator of climate change.


Elevation Flowering time Latitude Phenology Population differentiation 

Supplementary material

442_2013_2630_MOESM1_ESM.pdf (242 kb)
Supplementary material 1 (PDF 241 kb)


  1. Amano T, Smithers RJ, Sparks TH, Sutherland WJ (2010) A 250-year index of first flowering dates and its response to temperature changes. Proc R Soc Lond B. doi:10.1098/rspb.2010.0291 Google Scholar
  2. Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85. doi:10.1016/S0065-2504(08)60202-0 CrossRefGoogle Scholar
  3. Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci USA 108:20645–20649. doi:10.1073/pnas.1115559108 PubMedCrossRefGoogle Scholar
  4. Baskin JM, Baskin CC (1984) The ecological life cycle of Campanula americana in Northcentral Kentucky. Bull Torrey Bot Club 111:329–337. doi:10.2307/2995914 CrossRefGoogle Scholar
  5. Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135:126–146. doi:10.3159/07-RP-035R.1 CrossRefGoogle Scholar
  6. Bischoff A, Müller-Schärer H (2010) Testing population differentiation in plant species: how important are environmental maternal effects. Oikos 119:445–454. doi:10.1111/j.1600-0706.2009.17776.x CrossRefGoogle Scholar
  7. Blackman BK, Michaels SD, Rieseberg LH (2011) Connecting the sun to flowering in sunflower adaptation. Mol Ecol 20:3503–3512. doi:10.1111/j.1365-294X.2011.05166.x PubMedGoogle Scholar
  8. Bradley NL, Leopold AC, Ross J, Wellington H (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA 96:9701–9704. doi:10.1073/pnas.96.17.9701 PubMedCrossRefGoogle Scholar
  9. Brody AK (1997) Effects of pollinators, herbivores, and seed predators on flowering phenology. Ecology 78:1624–1631. doi:10.2307/2266086 CrossRefGoogle Scholar
  10. Burdon JJ, Thrall PH, Brown AHD (1999) Resistance and virulence structure in two Linum marginale-Melampsora lini host-pathogen metapopulations with different mating systems. Evolution 53:704–716. doi:10.2307/2640711 CrossRefGoogle Scholar
  11. Burgess KS, Etterson JR, Galloway LF (2007) Artificial selection shifts flowering phenology and other correlated traits in an autotetraploid herb. Heredity 99:641–648. doi:10.1038/sj.hdy.6801043 PubMedCrossRefGoogle Scholar
  12. Burkle LA, Alarcón R (2011) The future of plant-pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538. doi:10.3732/ajb.1000391 PubMedCrossRefGoogle Scholar
  13. Cohen D (1976) The optimal timing of reproduction. Am Nat 110:801–807. doi:10.1086/283103 CrossRefGoogle Scholar
  14. Cox DR (1972) Regression models and life tables (with discussion). J R Stat Soc B 34:187–220Google Scholar
  15. De Frenne P, Brunet J, Shevtsova A, Kolbs A, Graae BJ, Chabrerie O, Cousins SAO, Decocq G, De Schrijver A, Diekmann M, Gruwez R, Heinken T, Hermy M, Nilsson C, Stanton S, Tack W, Willaert J, Verheyen K (2011) Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Glob Change Biol 17:3240–3253. doi:10.1111/j.1365-2486.2011.02449.x CrossRefGoogle Scholar
  16. Donohue K (2009) Completing the cycle: maternal effects as the missing link in plant life histories. Philos Trans R Soc Lond B 364:1059–1074. doi:10.1098/rstb.2008.0291 CrossRefGoogle Scholar
  17. Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt (2005) The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution 59:758–770. doi:10.1554/04-418
  18. Dudley SA (1996) Differing selection on plant physiological traits in response to environmental water availability: a test of adaptive hypotheses. Evolution 50:92–102. doi:10.2307/2410783 CrossRefGoogle Scholar
  19. Dunnell KL, Travers SE (2011) Shifts in the flowering phenology of the northern Great Plains: patterns over 100 years. Am J Bot 98:935–945. doi:10.3732/ajb.1000363 PubMedCrossRefGoogle Scholar
  20. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068 PubMedCrossRefGoogle Scholar
  21. Eckhart VM, Geber MA, Morris WF, Fabio ES, Tiffin P, Moeller DA (2011) The geography of demography: long-term demographic studies and species distribution models reveal a species border limited by adaptation. Am Nat 178:S26–S43. doi:10.1086/661782 PubMedCrossRefGoogle Scholar
  22. Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22:432–439. doi:10.1016/j.tree.2007.05.006 PubMedCrossRefGoogle Scholar
  23. Forrest J, Miller-Rushing AJ (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos Trans R Soc Lond B 365:3101–3112. doi:10.1098/rstb.2010.0145 CrossRefGoogle Scholar
  24. Forrest J, Inouye DW, Thomson JD (2010) Flowering phenology in subalpine meadows: does climate variation influence community co-flowering patterns? Ecology 91:431–440. doi:10.1890/09-0099.1 PubMedCrossRefGoogle Scholar
  25. Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278–1282. doi:10.1073/pnas.0608379104 PubMedCrossRefGoogle Scholar
  26. Gadella TWJ (1964) Cytotaxonomic studies in the genus Campanula. Wentia 11:1–104Google Scholar
  27. Galloway LF (2001a) Parental environmental effects on life history in the herbaceous plant Campanula americana. Ecology 82:2781–2789. doi:10.2307/2679960 Google Scholar
  28. Galloway LF (2001b) The effect of maternal and paternal environments on seed characters in the herbaceous plant Campanula americana (Campanulaceae). Am J Bot 88:832–840. doi:10.2307/2657035 PubMedCrossRefGoogle Scholar
  29. Galloway LF (2002) The effect of maternal phenology on offspring characters in the herbaceous plant Campanula americana. J Ecol 90:851–858. doi:10.1046/j.1365-2745.2002.00714.x CrossRefGoogle Scholar
  30. Galloway LF, Burgess KS (2009) Manipulation of flowering time: phenological integration and maternal effects. Ecology 90:2139–2148. doi:10.1890/08-0948.1 PubMedCrossRefGoogle Scholar
  31. Galloway LF, Etterson JR (2007) Transgenerational plasticity is adaptive in the wild. Science 318:1134–1136. doi:10.1126/science.1148766 PubMedCrossRefGoogle Scholar
  32. Galloway LF, Etterson JR (2009) Plasticity to canopy shade in a monocarpic herb: within- and between-generation effects. New Phytol 182:1003–1012. doi:10.1111/j.1469-8137.2009.02803.x PubMedCrossRefGoogle Scholar
  33. Galloway LF, Etterson JR, Hamrick JL (2003) Outcrossing rates and inbreeding depression in the herbaceous autotetraploid, Campanula americana. Heredity 90:308–315. doi:10.1038/sj.hdy.6800242 PubMedCrossRefGoogle Scholar
  34. Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606Google Scholar
  35. Gerard VA, Du Bois KR (1988) Temperature ecotypes near the southern boundary of the kelp Laminaria saccharina. Mar Biol 97:575–580. doi:10.1007/BF00391054 CrossRefGoogle Scholar
  36. Gomez JM (1993) Phenotypic selection on flowering synchrony in a high mountain plant, Hormathophylla spinosa (Cruciferae). J Ecol 81:605–613. doi:10.2307/2261659 CrossRefGoogle Scholar
  37. Goulart MF, Lovato MB, de Vasconcellos Barros F, Valladares F, Lemos-Filho JP (2011) Which extent is plasticity to light involved in the ecotypic differentiation of a tree species from savanna and forest? Biotropica 43:695–703. doi:10.1111/j.1744-7429.2011.00760.x Google Scholar
  38. Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ (2012) Molecular mechanisms of seed dormancy. Plant Cell Environ 35:1769–1786. doi:10.1111/j.1365-3040.2012.02542.x PubMedCrossRefGoogle Scholar
  39. Griffith TM, Watson MA (2005) Stress avoidance in a common annual: reproductive timing is important for local adaptation and geographic distribution. J Evol Biol 18:1601–1612. doi:10.1111/j.1420-9101.2005.01021.x PubMedCrossRefGoogle Scholar
  40. Hall MC, Willis JH (2006) Divergent selection on flowering time contributes to local adaptation in Mimulus guttatus populations. Evolution 60:2466–2477. doi:10.1554/05-688.1 PubMedGoogle Scholar
  41. Hancock JF, Bringhurst RS (1978) Inter-populational differentiation and adaptation in the perennial, diploid species Fragaria vesca L. Am J Bot 65:795–803. doi:10.2307/2442156 CrossRefGoogle Scholar
  42. Hendricks P (2003) Spring snow conditions, laying date, and clutch size in an alpine population of American Pipits. J Field Ornithol 74:423–429Google Scholar
  43. Hoffmann AA, Camac JS, Williams RJ, Papst W, Jarrad FC, Wahren C-H (2010) Phenological changes in six Australian subalpine plants in response to experimental warming and year-to-year variation. J Ecol 98:927–937. doi:10.1111/j.1365-2745.2010.01667.x CrossRefGoogle Scholar
  44. Huang H-R, Yan P-C, Lascoux M, Ge X-J (2012) Flowering time and transcriptome variation in Capsella bursa-pastoris (Brassicaceae). New Phytol 194:676–689. doi:10.1111/j.1469-8137.2012.04101.x PubMedCrossRefGoogle Scholar
  45. Imam AG, Allard RW (1965) Population studies in predominantly self-pollinated species VI. Genetic variability between and within natural populations of wild oats from differing habitats in California. Genetics 51:49–62PubMedGoogle Scholar
  46. Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflower. Ecology 89:353–362. doi:10.1890/06-2128.1 PubMedCrossRefGoogle Scholar
  47. Iwasa Y, Cohen D (1989) Optimal growth schedule of a perennial plant. Am Nat 133:480–505. doi:10.1086/284931 CrossRefGoogle Scholar
  48. Jonas CS, Geber MA (1999) Variation among populations of Clarkia unguiculata (Onagraceae) along altitudinal and latitudinal gradients. Am J Bot 86:333–343. doi:10.2307/2656755 PubMedCrossRefGoogle Scholar
  49. Kalisz S, Wardle GM (1994) Life history variation in Campanula americana (Campanulaceae): population differentiation. Am J Bot 81:521–527. doi:10.2307/2445725 CrossRefGoogle Scholar
  50. Kannenberg LW, Allard RW (1967) Population studies in predominantly self-pollinated species. VIII. Genetic variability in the Festuca microstachys complex. Evolution 21:227–240. doi:10.2307/2406671 CrossRefGoogle Scholar
  51. Kawakami T, Morgan TJ, Nippert JB, Ocheltree TW, Keith R, Dhakal P, Ungerer MC (2011) Natural selection drives clinal life history patterns in the perennial sunflower species, Helianthus maximiliani. Mol Ecol 20:2318–2328. doi:10.1111/j.1365-294X.2011.05105.x PubMedCrossRefGoogle Scholar
  52. Kelly CA (1992) Spatial and temporal variation in selection on correlated life-history traits and plant size in Chamaecrista fasciculata. Evolution 46:1658–1673. doi:10.2307/2410022 CrossRefGoogle Scholar
  53. Kigel J, Konsens I, Rosen N, Rotem G, Kon A, Fragman-Sapir O (2011) Relationships between flowering time and rainfall gradients across Mediterranean-desert transects. Isr J Ecol Evol 57:91–109. doi:10.1560/IJEE.57.1-2.91 CrossRefGoogle Scholar
  54. Kilkenny FF, Galloway LF (2008) Reproductive success in varying light environments: direct and indirect effects of light on plants and pollinators. Oecologia 155:247–255. doi:10.1007/s00442-007-0903-z PubMedCrossRefGoogle Scholar
  55. Kollmann J, Bañuelos MJ (2004) Latitudinal trends in growth and phenology of the invasive alien plant Impatiens glandulifera (Balsaminaceae). Divers Distrib 10:377–385. doi:10.1111/j.1366-9516.2004.00126.x CrossRefGoogle Scholar
  56. Kruszewski L, Galloway LF (2006) Explaining outcrossing rate in Campanulastrum americanum (Campanulaceae): geitonogamy and cryptic self-incompatibility. Int J Plant Sci 167:455–461. doi:10.1086/501051 CrossRefGoogle Scholar
  57. Lacey EP (1988) Latitudinal variation in reproductive timing of a short-lived monocarp, Daucus carota (Apiaceae). Ecology 69:220–232. doi:10.2307/1943178 CrossRefGoogle Scholar
  58. Laurie DA (1997) Comparative genetics of flowering time. Plant Mol Biol 35:167–177. doi:10.1023/A:1005726329248 PubMedCrossRefGoogle Scholar
  59. Leger EA, Rice KJ (2007) Assessing the speed and predictability of local adaptation in invasive California poppies (Eschscholzia californica). J Evol Biol 20:1090–1103. doi:10.1111/j.1420-9101.2006.01292.x PubMedCrossRefGoogle Scholar
  60. Lin DY, Wei LJ (1989) The robust inference for the proportional hazards model. J Am Stat Assoc 84:1074–1078. doi:10.1080/01621459.1989.10478874 CrossRefGoogle Scholar
  61. McMillan C (1959) The role of ecotypic variation in the distribution of the central grassland of North America. Ecol Monogr 29:285–308. doi:10.2307/1942132 CrossRefGoogle Scholar
  62. McNair JN, Sunkara A, Frobish D (2012) How to analyze seed germination data using statistical time-to-event analysis: non-parametric and semi-parametric methods. Seed Sci Res 22:77–95. doi:10.1017/S0960258511000547 CrossRefGoogle Scholar
  63. Méndez-Vigo B, Picó FX, Ramiro M, Martínez-Zapater JM, Alonso-Blanco C (2011) Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Physiol 157:1942–1955. doi:10.1104/pp.111.183426 PubMedCrossRefGoogle Scholar
  64. Metcalf JC, Rose KE, Rees M (2003) Evolutionary demography of monocarpic perennials. Trends Ecol Evol 18:471–480. doi:10.1016/S0169-5347(03)00162-9 CrossRefGoogle Scholar
  65. Montesino-Navarro A, Wig J, Picó FX, Tonsor SJ (2011) Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. New Phytol 189:282–294. doi:10.1111/j.1469-8137.2010.03479.x CrossRefGoogle Scholar
  66. Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407. doi:10.1016/S0169-5347(98)01472-4 PubMedCrossRefGoogle Scholar
  67. Munguía-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA (2011) Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol Lett 14:511–521. doi:10.1111/j.1461-0248.2011.01601.x PubMedCrossRefGoogle Scholar
  68. O’Geen AT (2012) Soil water dynamics. Nat Educ Knowledge 3:12Google Scholar
  69. O’Neil P (1997) Natural selection on genetically correlated phenological characters in Lythrum salicaria L. Lythraceae). Evolution 51:267–274. doi:10.2307/2410980 CrossRefGoogle Scholar
  70. Olmsted CE (1944) Growth and development in range grasses. IV. Photoperiodic responses in twelve geographic strains of side-oats grama. Bot Gaz 106:46–74. doi:10.1086/335269 CrossRefGoogle Scholar
  71. Olsson K, Ågren J (2002) Latitudinal population differentiation in phenology, life history and flower morphology in the perennial herb Lythrum salicaria. J Evol Biol 15:983–996. doi:10.1046/j.1420-9101.2002.00457.x CrossRefGoogle Scholar
  72. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13:1860–1872. doi:10.1111/j.1365-2486.2007.01404.x CrossRefGoogle Scholar
  73. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286 PubMedCrossRefGoogle Scholar
  74. Petrů M, Tielbörger K (2008) Germination behaviour of annual plants under changing climatic conditions: separating local and regional environmental effects. Oecologia 155:717–728. doi:10.1007/s00442-007-0955-0 PubMedCrossRefGoogle Scholar
  75. Pilson D (2000) Herbivory and natural selection on flowering phenology in wild sunflower, Helianthus annuus. Oecologia 122:72–82. doi:10.1007/PL00008838 CrossRefGoogle Scholar
  76. Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26:363–373. doi:10.1002/bies.20021 PubMedCrossRefGoogle Scholar
  77. Quinn JA, Wetherington JD (2002) Genetic variability and phenotypic plasticity in flowering phenology in populations of two grasses. J Torrey Bot Soc 129:96–106. doi:10.2307/3088723 CrossRefGoogle Scholar
  78. Räsänen K, Kruuk LEB (2007) Maternal effects and evolution at ecological time scales. Funct Ecol 21:408–421. doi:10.1111/j.1365-2435.2007.01246.x CrossRefGoogle Scholar
  79. Rathcke B, Lacey R (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214. doi:10.1146/annurev.ecolsys.16.1.179 CrossRefGoogle Scholar
  80. Riginos C, Heschel MS, Schmitt M (2007) Maternal effects of drought stress and inbreeding in Impatiens capensis (Balsaminaceae). Am J Bot 94:1984–1991. doi:10.3732/ajb.94.12.1984 PubMedCrossRefGoogle Scholar
  81. Riihmäki M, Savolainen O (2004) Environmental and genetic effects of flowering differences between northern and southern populations of Arabidopsis lyrata (Brassicaceae). Am J Bot 91:1036–1045. doi:10.3732/ajb.91.7.1036 CrossRefGoogle Scholar
  82. SAS Institute (2011) SAS 9.3 for Windows. SAS Institute, Cary Google Scholar
  83. Sherry RA, Zhou XH, Gu SL, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo YQ (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci USA 104:198–202. doi:10.1073/pnas.0605642104 PubMedCrossRefGoogle Scholar
  84. Sherry RA, Arnone JA III, Johnson DW, Schimel DS, Verburg PS, Luo Y (2012) Carry over from previous year environmental conditions alters dominance hierarchy in a prairie plant community. J Plant Ecol 5:134–146. doi:10.1093/jpe/rtr028 CrossRefGoogle Scholar
  85. Smith HB (1927) Annual versus biennial growth habit and its inheritance in Melilotus alba. Am J Bot 14:129–146. doi:10.2307/2435604 CrossRefGoogle Scholar
  86. Sork VL, Stowe KA, Hochwender C (1993) Evidence for local adaptation in closely adjacent subpopulations of northern red oak (Quercus rubra L.) expressed as resistance to leaf herbivores. Am Nat 142:928–936. doi:10.1086/285581 PubMedCrossRefGoogle Scholar
  87. Stenström M, Gugerli F, Henry GHR (1997) Response of Saxifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Glob Change Biol 3S:44–54. doi:10.1111/j.1365-2486.1997.gcb144.x CrossRefGoogle Scholar
  88. Stinchcombe JR, Weinig C, Ungerer M, Olsen KM, May C, Halldorsdottir SS, Purugganan MD, Schmitt J (2004) A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc Natl Acad Sci USA 101:4712–4717. doi:10.1073/pnas.0306401101 PubMedCrossRefGoogle Scholar
  89. Thompson JN (1994) The coevolutionary process. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  90. Turesson G (1930) The selective effect of climate upon plant species. Hereditas 14:99–152. doi:10.1111/j.1601-5223.1930.tb02531.x CrossRefGoogle Scholar
  91. Van Dijk H, Boudry P, McCombie H, Vernet P (1997) Flowering time in wild beet (Beta vulgaris ssp. maritima) along a latitudinal cline. Acta Oecol 18:47–60. doi:10.1016/S1146-609X(97)80080-X CrossRefGoogle Scholar
  92. Wagner I, Simons AM (2009) Divergence among artic and alpine populations of the annual, Koenigia islandica: morphology, life-history, and phenology. Ecography 32:114–122. doi:10.1111/j.1600-0587.2008.05497.x CrossRefGoogle Scholar
  93. Weber E, Schmid B (1998) Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. Am J Bot 85:1110–1121. doi:10.2307/2446344 PubMedCrossRefGoogle Scholar
  94. Zhang X, Friedl MA, Schaaf CB, Strahler AH (2004) Climate controls on vegetation phenological patterns in northern mid- to high latitudes inferred from MODIS data. Glob Change Biol 10:1133–1145. doi:10.1111/j.1529-8817.2003.00784.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Holly R. Prendeville
    • 1
  • Karen Barnard-Kubow
    • 1
  • Can Dai
    • 1
    • 2
  • Brian C. Barringer
    • 1
    • 3
  • Laura F. Galloway
    • 1
  1. 1.Department of BiologyUniversity of VirginiaCharlottesvilleUSA
  2. 2.School of Resources and Environmental ScienceHubei UniversityWuhanChina
  3. 3.Department of BiologyUniversity of Wisconsin - Stevens PointStevens PointUSA

Personalised recommendations