Skip to main content
Log in

Supply determines demand: influence of partner quality and quantity on the interactions between bats and pitcher plants

  • Plant-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Interspecific relationships such as mutualism and parasitism are major drivers of biodiversity. Because such interactions often comprise more than two species, ecological studies increasingly focus on complex multispecies systems. However, the spatial heterogeneity of multi-species interactions is often poorly understood. Here, we investigate the unusual interaction of a bat (Kerivoula hardwickii hardwickii) and two pitcher plant species (Nepenthes hemsleyana and N. bicalcarata) whose pitchers serve as roost for bats. Nepenthes hemsleyana offers roosts of higher quality, indicated by a more stable microclimate compared to N. bicalcarata but occurs at lower abundance and is less common than the latter. Whereas N. hemsleyana benefits from the roosting bats by gaining nitrogen from their feces, the bats’ interaction with N. bicalcarata seems to be commensal or even parasitic. Bats stayed longer in roosts of higher quality provided by N. hemsleyana and preferred them to pitchers of N. bicalcarata in a disturbance experiment. Moreover, bats roosting only in pitchers of N. hemsleyana had a higher body condition and were less infested with parasites compared to bats roosting in pitchers of N. bicalcarata. Our study shows how the local supply of roosts with different qualities affects the behavior and status of their inhabitants and—as a consequence—how the demand of the inhabitants can influence evolutionary adaptations of the roost providing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anonymous (2008) Government of Brunei Darussalam. Heart of Borneo Project Implementation Framework, Negara Brunei Darussalam

    Google Scholar 

  • Arthur L, Lemaire M (2009) Les chauves-souris de France, Belgique. Luxembourg et Suisse. Biotope. Museum national d’HistoireNaturelle, Mèze

    Google Scholar 

  • Ashton PS, Kamariah AS, Said IM (2003) A field guide to the forest trees of Brunei Darussalam. Universiti Brunei Darussalam, Brunei Darussalam

    Google Scholar 

  • Baudunette RV, Wells RT, Sanderson KJ, Clark B (1994) Microclimatic conditions in maternity caves of the bent-wing bat, Miniopterus schreibersii: an attempted restoration of a former maternity site. Wildl Res 21:607. doi:10.1071/WR9940607

    Article  Google Scholar 

  • Bauer U, Grafe TU, Federle W (2011) Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana. J Exp Bot 62:3683–3692. doi:10.1093/jxb/err082

    Article  PubMed  CAS  Google Scholar 

  • Bauer U, Clemente CJ, Renner T, Federle W (2012) Form follows function: morphological diversification and alternative trapping strategies in carnivorous Nepenthes pitcher plants. J Evol Biol 25:90–102

    Article  PubMed  Google Scholar 

  • Beattie AJ (1985) The evolutionary ecology of ant-plant mutualisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bohn HF (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci USA 101:14138–14143. doi:10.1073/pnas.0405885101

    Article  PubMed  CAS  Google Scholar 

  • Boucher DH, James S, Keeler KH (1982) The ecology of mutualism. Annu Rev Ecol Syst 13:315–347

    Article  Google Scholar 

  • Brigham RM, Brigham AC (1989) Evidence for association between a mother bat and its young during and after foraging. Am Midl Nat 121:205–207

    Article  Google Scholar 

  • Bronstein JL (1994) Our current understanding of mutualism. Q Rev Biol 69:31–51

    Article  Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287. doi:10.1046/j.1461-0248.2001.00218.x

    Article  Google Scholar 

  • Brown CR, Brown MB (1986) Ectoparasitism as a cost of coloniality in cliff swallows (Hirundo pyrrhonota). Ecology 67:1206–1218

    Article  Google Scholar 

  • Carpenter RE, Graham JB (1967) Physiological responses to temperature in the long-nosed bat, Leptonycteris sanborni. Comp Biochem Physiol 22:709–722

    Article  PubMed  CAS  Google Scholar 

  • Chin L, Moran JA, Clarke CM (2010) Trap geometry in three giant montane pitcher plant species from Borneo is a function of tree shrew body size. New Phytol 186:461–470. doi:10.1111/j.1469-8137.2009.03166.x

    Article  PubMed  Google Scholar 

  • Chruszcz BJ, Barclay RM (2002) Thermoregulatory ecology of a solitary bat, Myotis evotis, roosting in rock crevices. Funct Ecol 16:18–26. doi:10.1046/j.0269-8463.2001.00602.x

    Article  Google Scholar 

  • Clarke C (2006) Nepenthes of Borneo. Natural History Publications in association with Science and Technology Unit, Kota Kinabalu

    Google Scholar 

  • Clarke CM, Bauer U, Lee CC, Tuen AA, Rembold K, Moran JA (2009) Tree shrew lavatories: a novel nitrogen sequestration strategy in a tropical pitcher plant. Biol Lett 5:632–635. doi:10.1098/rsbl.2009.0311

    Article  PubMed  Google Scholar 

  • Clarke CM, Moran JA, Lee CC (2011) Nepenthes baramensis (Nepenthaceae) - a new species from north-western Borneo. Blumea 56:229–233. doi:10.3767/000651911X607121

    Article  Google Scholar 

  • Davis JM (2008) Patterns of variation in the influence of natal experience on habitat choice. Q Rev Biol 83:363–380. doi:10.1086/592851

    Article  PubMed  Google Scholar 

  • Davis SJ, Becker P (1996) Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. J Trop For Sci 8:542–569

    Google Scholar 

  • de Mazancourt C, Loreau M, Dieckmann UL (2005) Understanding mutualism when there is adaptation to the partner. J Ecol 93:305–314. doi:10.1111/j.0022-0477.2004.00952.x

    Article  Google Scholar 

  • Dechmann DK, Kalko EK, Kerth G (2004) Ecology of an exceptional roost: energetic benefits could explain why the bat Lophostoma silvicolum roosts in active termite nests. Evol Ecol Res 6:1037–1050

    Google Scholar 

  • Federle W, Maschwitz U, Fiala B, Riederer M, Hölldobler B (1997) Slippery ant-plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae). Oecologia 112:217–224. doi:10.1007/s004420050303

    Article  Google Scholar 

  • Fiala B, Grunsky H, Maschwitz U, Linsenmair KE (1994) Diversity of ant-plant interactions: protective efficacy in Macaranga species with different degrees of ant association. Oecologia 97:186–192. doi:10.1007/BF00323148

    Article  Google Scholar 

  • Franks NR, Dornhaus A, Fitzsimmons JP, Stevens M (2003) Speed versus accuracy in collective decision making. Proc R Soc Lond B 270:2457–2463. doi:10.1098/rspb.2003.2527

    Article  Google Scholar 

  • Fraser AM, Axén AH, Pierce NE (2001) Assessing the quality of different ant species as partners of a myrmecophilous butterfly. Oecologia 129:452–460

    Google Scholar 

  • Frederickson ME (2005) Ant species confer different partner benefits on two neotropical myrmecophytes. Oecologia 143:387–395. doi:10.1007/s00442-004-1817-7

    Article  PubMed  Google Scholar 

  • Gaume L, Di Giusto B (2009) Adaptive significance and ontogenetic variability of the waxy zone in Nepenthes rafflesiana. Ann Bot 104:1281–1291. doi:10.1093/aob/mcp238

    Article  PubMed  Google Scholar 

  • Gaume L, Forterre Y, Lynn D (2007) A viscoelastic deadly fluid in carnivorous pitcher plants. PLoS ONE 2:e1185. doi:10.1371/journal.pone.0001185

    Article  PubMed  Google Scholar 

  • Geiser F, Stawski C (2011) Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integr Comp Biol 51:337–348. doi:10.1093/icb/icr042

    Article  PubMed  Google Scholar 

  • Genoud M, Bonaccorso FJ, Anends A (1990) Rate of metabolism and temperature regulation in two small tropical insectivorous bats (Peropteryx macrotis and Natalus tumidirostris). Comp Biochem Physiol 97:229–234

    Article  Google Scholar 

  • Giardina C, Sanford R, Døckersmith I (2000) Changes in soil phosphorus and nitrogen during slash-and-burn clearing of a dry tropical forest. Soil Sci Soc Am J 64:399. doi:10.2136/sssaj2000.641399x

    Article  CAS  Google Scholar 

  • Gomulkiewicz R, Nuismer SL, Thompson JN (2003) Coevolution in variable mutualisms. Am Nat 162:S80–S92. doi:10.1086/378705

    Article  PubMed  Google Scholar 

  • Grafe TU, Schöner CR, Kerth G, Junaidi A, Schöner MG (2011) A novel resource-service mutualism between bats and pitcher plants. Biol Lett 7:436–439. doi:10.1098/rsbl.2010.1141

    Article  PubMed  Google Scholar 

  • Heil M, Gonzalez-Teuber M, Clement LW, Kautz S, Verhaagh M, Bueno JC (2009) Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc Natl Acad Sci USA 106:18091–18096. doi:10.1073/pnas.0904304106

    Article  PubMed  CAS  Google Scholar 

  • Herreid CF, Schmidt-Nielson K (1966) Oxygen consumption, temperature, and water loss in bats from different environments. Am J Physiol 211:1108–1112

    PubMed  Google Scholar 

  • Howe HF (1984) Constraints on the evolution of mutualisms. Am Nat 123:764–777

    Article  Google Scholar 

  • Janzen DH (1974) Epiphytic myrmecophytes in Sarawak: mutualism through the feeding of plants by ants. Biotropica 6:237–259

    Article  Google Scholar 

  • Jenkins EV, Laine T, Morgan SE, Cole KR, Speakman JR (1998) Roost selection in the pipistrelle bat, Pipistrellus pipistrellus (Chiroptera: Vespertilionidae), in northeast Scotland. Anim Behav 56:909–917

    Article  PubMed  Google Scholar 

  • Kerth G, Weissmann K, König B (2001) Day roost selection in female Bechstein’s bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia 126:1–9

    Article  Google Scholar 

  • Kerth G, Ebert C, Schmidtke C (2006) Group decision-making in fission-fusion societies: evidence from two field experiments in Bechstein’s bats. Proc R Soc Lond B 273:2785–2790

    Article  Google Scholar 

  • Klopfer P (1963) Behavioral aspects of habitat selection: the role of early experience. Wilson Bull 75:15–22

    Google Scholar 

  • Kunz TH, MacCracken GF (1996) Tents and harems: apparent defence of foliage roosts by tent-making bats. J Trop Ecol 12:121–137

    Article  Google Scholar 

  • Lausen CL, Barclay RM (2003) Thermoregulation and roost selection by reproductive female big brown bats (Eptesicus fuscus) roosting in rock crevices. J Zool 260:235–244

    Article  Google Scholar 

  • Lewis SE (1996) Low roost-site fidelity in pallid bats: associated factors and effect on group stability. Behav Ecol Sociobiol 39:335–344. doi:10.1007/s002650050298

    Article  Google Scholar 

  • Lourenço SI, Palmeirim JM (2007) Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. J Zool 273:161–168. doi:10.1111/j.1469-7998.2007.00322.x

    Article  Google Scholar 

  • Macfarlane JM (1908) Nepenthaceae. In: Engler A (ed) Sarraceniales. Das Pflanzenreich, vol 111. von Wilhelm Engelmann, Leipzig, pp 1–92

  • Manser MB, Bell MB (2004) Spatial representation of shelter locations in meerkats, Suricata suricatta. Anim Behav 68:151–157

    Article  Google Scholar 

  • Merbach MA, Merbach DJ, Maschwitz U, Booth WE, Fiala B, Zizka G (2002) Mass march of termites into the deadly trap. Nature 415:36–37. doi:10.1038/415036a

    Article  PubMed  CAS  Google Scholar 

  • Miller TE (2007) Does having multiple partners weaken the benefits of facultative mutualism? A test with cacti and cactus-tending ants. Oikos 116:500–512. doi:10.1111/j.2007.0030-1299.15317.x

    Article  Google Scholar 

  • Moeller DA (2005) Pollinator community structure and sources of spatial variation in plant-pollinator interactions in Clarkia xantiana ssp. xantiana. Oecologia 142:28–37. doi:10.1007/s00442-004-1693-1

    Article  PubMed  Google Scholar 

  • Moran JA (1996) Pitcher dimorphism, prey composition and the mechanisms of prey attraction in the pitcher plant Nepenthes rafflesiana in Borneo. J Ecol 84:515–525

    Article  Google Scholar 

  • Moran JA, Booth WE, Charles JK (1999) Aspects of pitcher morphology and spectral characteristics of six Bornean Nepenthes pitcher plant species: implications for prey capture. Ann Bot 83:521–528. doi:10.1006/anbo.1999.0857

    Article  Google Scholar 

  • Moran JA, Clarke CM, Hawkins BJ (2003) From carnivore to detritivore? Isotopic evidence for leaf litter utilization by the tropical pitcher plant Nepenthes ampullaria. Int J Plant Sci 164:635–639

    Article  Google Scholar 

  • Noë R, Hammerstein P (1994) Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav Ecol Sociobiol 35:1–11. doi:10.1007/BF00167053

    Article  Google Scholar 

  • Osunkoya OO, Daud SD, Wimmer FL (2008) Longevity, lignin content and construction cost of the assimilatory organs of Nepenthes species. Ann Bot 102:845–852. doi:10.1093/aob/mcn162

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Doak DF, Stanton ML, Bronstein JL, Kiers ET, Young TP, Goheen JR, Pringle RM (2010) Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proc Natl Acad Sci USA 107:17234–17239. doi:10.1073/pnas.1006872107

    Article  PubMed  CAS  Google Scholar 

  • Payne J, Francis CM, Phillipps K (1985) A field guide to the mammals of Borneo. Sabah Society, World Wildlife Fund Malaysia, Kota Kinabalu

    Google Scholar 

  • Perkins JM (1996) Does competition for roosts influence bat distribution in a managed forest? In: Barclay RMR, Brigham RM (eds) Bats and Forests Symposium, October 19-21, 1995. Victoria, British Columbia, Canada. Research Branch, BC Ministry of Forests, Victoria, pp 164–172

  • Radovsky FJ (1967) The Macronyssidae and Laelapidae (Acarina: Mesostigmata) parasitic on bats. Univ Calif Publ Entomol 46:1–288

    Google Scholar 

  • Reckardt K, Kerth G (2007) Roost selection and roost switching of female Bechstein’s bats (Myotis bechsteinii) as a strategy of parasite avoidance. Oecologia 154:581–588. doi:10.1007/s00442-007-0843-7

    Article  PubMed  Google Scholar 

  • Reckardt K, Kerth G (2009) Does the mode of transmission between hosts affect the host choice strategies of parasites? Implications from a field study on bat fly and wing mite infestation of Bechstein’s bats. Oikos 118:183–190. doi:10.1111/j.1600-0706.2008.16950.x

    Article  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716. doi:10.1046/j.0028-646x.2001.00210.x

    Article  Google Scholar 

  • Riedel M, Eichner A, Jetter R (2003) Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218:87–97. doi:10.1007/s00425-003-1075-7

    Article  PubMed  CAS  Google Scholar 

  • Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592

    Article  PubMed  Google Scholar 

  • Schemske DW, Horvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–521. doi:10.1126/science.225.4661.519

    Article  PubMed  CAS  Google Scholar 

  • Schöner CR, Schöner MG, Kerth G (2010) Similar is not the same: social calls of conspecifics are more effective in attracting wild bats to day roosts than those of other bat species. Behav Ecol Sociobiol 64:2053–2063. doi:10.1007/s00265-010-1019-8

    Article  Google Scholar 

  • Schulz M (2000) Roosts used by the golden-tipped bat Kerivoula papuensis (Chiroptera: Vespertilionidae). J Zool 250:467–478. doi:10.1111/j.1469-7998.2000.tb00790.x

    Article  Google Scholar 

  • Schulze W, Frommer WB, Ward JM (1999) Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. Plant J 17:637–646. doi:10.1046/j.1365-313X.1999.00414.x

    Article  PubMed  CAS  Google Scholar 

  • Schwarzkopf L, Alford RA (1996) Desiccation and shelter-site use in a tropical amphibian: comparing toads with physical models. Funct Ecol 10:193–200

    Article  Google Scholar 

  • Sedgeley JA (2001) Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, in New Zealand. J Appl Ecol 38:425–438. doi:10.1046/j.1365-2664.2001.00607.x

    Article  Google Scholar 

  • Sedgeley JA, O’Donnell CF (1999) Roost selection by the long-tailed bat, Chalinolobus tuberculatus, in temperate New Zealand rainforest and its implications for the conservation of bats in managed forests. Biol Conserv 88:261–276

    Article  Google Scholar 

  • Stachowicz JJ, Hay ME (1996) Facultative mutualism between an herbivorous crab and a coralline alga: advantages of eating noxious seaweeds. Oecologia 105:377–387. doi:10.1007/BF00328741

    Article  Google Scholar 

  • Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:S10–S23. doi:10.1086/378646

    Article  PubMed  Google Scholar 

  • Struebig MJ, Bozek M, Hildebrand J, Rossiter SJ, Lane DJW (2012) Bat diversity in the lowland of the Heart of Borneo. Biodivers Conserv. doi:10.1007/s10531-012-0393-0

    Google Scholar 

  • Studier EH (1970) Evaporative water loss in bats. Comp Biochem Physiol 35:935–943

    Article  Google Scholar 

  • Thornham DG, Smith JM, Grafe TU, Federle W (2012) Setting the trap: cleaning behaviour of Camponotus schmitzi increases long-term capture efficiency of their pitcher plant host, Nepenthes bicalcarata. Funct Ecol 26:11–19

    Article  Google Scholar 

  • Vonhof MJ, Barclay RM (1997) Use of tree stumps as roosts by the western long-eared bat. J Wildl Manag 61:674–684

    Article  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Whitaker JO Jr, Ritzi CM, Dick CW (2009) Collecting and preserving bat ectoparasites for ecological study. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. Johns Hopkins University Press, Baltimore, pp 806–827

    Google Scholar 

  • Zahn A, Rupp D (1999) Ectoparasite load in European vespertilionid bats. J Zool 262:383–391. doi:10.1017/S0952836903004722

    Article  Google Scholar 

Download references

Acknowledgments

We thank Liaw Lin Ji for assistance in the field and K. Fischer for helpful statistical advice. D. Dekeukeleire, J. Lambert, R. Simon and two anonymous referees kindly reviewed the manuscript. The German Academic Exchange Service (DAAD), the German Research Foundation (DFG: KE 746/5-1) and the University of Brunei Darussalam [RG/1(105) & RG/1(193)] funded this project. The Forestry Department of Brunei Darussalam granted permits to work in the field. This was an observational study of free-ranging animals. The experimental protocols adhered to the Animal Behaviour Society guidelines for the use of animals in research and were approved by the University Brunei Darussalam Research Committee (UBD/PNC2/2/RG 105 &193).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline R. Schöner.

Additional information

Communicated by Joanna Lambert.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöner, C.R., Schöner, M.G., Kerth, G. et al. Supply determines demand: influence of partner quality and quantity on the interactions between bats and pitcher plants. Oecologia 173, 191–202 (2013). https://doi.org/10.1007/s00442-013-2615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2615-x

Keywords

Navigation