Abstract
Ecologically isolated habitats (e.g., oceanic islands) favor the appearance of small assemblages of pollinators, generally characterized by highly contrasted life modes (e.g., birds, lizards), and opportunistic nectar-feeding behavior. Different life modes should promote a low functional equivalence among pollinators, while opportunistic nectar feeding would lead to reduced and unpredictable pollination effectiveness (PE) compared to more specialized nectarivores. Dissecting the quantity (QNC) and quality (QLC) components of PE, we studied the opportunistic bird–lizard pollinator assemblage of Isoplexis canariensis from the Canary Islands to experimentally evaluate these potential characteristics. Birds and lizards showed different positions in the PE landscape, highlighting their low functional equivalence. Birds were more efficient than lizards due to higher visitation frequency (QNC). Adult lizards differed from juveniles in effecting a higher production of viable seeds (QLC). The disparate life modes of birds and lizards resulted in ample intra- and inter-specific PE variance. The main sources of PE variance were visitation frequency (both lizards and birds), number of flowers probed (lizards) and proportion of viable seeds resulting from a single visit (birds). The non-coincident locations of birds and lizards on the PE landscape indicate potential constraints for effectiveness. Variations in pollinator abundance can result in major effectiveness shifts only if QLC is relatively high, while changes in QLC would increase PE substantially only at high QNC. The low functional equivalence of impoverished, highly contrasted pollinator assemblages may be an early diagnostic signal for pollinator extinction potentially driving the collapse of mutualistic services.
This is a preview of subscription content, access via your institution.



References
Abe H, Ueno S, Tsumura Y, Hasegawa M (2011) Expanded home range of pollinator birds facilitates greater pollen flow of Camellia japonica in a forest heavily damaged by volcanic activity. In: Isagi Y, Suyama Y (eds) Single-pollen genotyping. Springer, Tokyo, pp 47–62. doi: 10.1007/978-4-431-53901-8_5
Aigner PA (2001) Optimality modeling and fitness trade-offs: when should plants become pollinator specialists? Oikos 95:177–184. doi:10.1034/j.1600-0706.2001.950121.x
Aizen MA, Harder LD (2007) Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology 88:271–281. doi:10.1890/06-1017
Alström P, Ericson PGP, Olsson U, Sundberg P (2006) Phylogeny and classification of the avian superfamily Sylvioidea. Mol Phylogenet Evol 38:381–397. doi:10.1016/j.ympev.2005.05.015
Anderson SH, Kelly D, Ladley JJ, Molloy S, Terry J (2011) Cascading effects of bird functional extinction reduce pollination and plant density. Science 331:1068–1071. doi:10.1126/science.1199092
Armbruster WS, Fenster CB, Dudash MR (2000) Pollination “principles” revisited: specialization, pollination syndromes, and the evolution of flowers. Det Norske Videnskapsakademia. I. Matematisk Naturvidenskapelige Klasse, Skrifter 39:139–148
Bañares A, Blanco A, Castroviejo M, Fernández López A, Gandullo JM, Muñoz L, Sánchez Palomares O, Serrada R (1991) Estudio ecológico de la laurisilva canaria. ICONA, Madrid
Bronstein JL, Wilson WG, Morris WF (2003) Ecological dynamics of mutualist/antagonist communities. Am Nat 162:S24–S39. doi:10.1086/378645
Castellanos MC, Wilson P, Thomson JD (2003) Pollen transfer by hummingbirds and bumblebees, and the divergence of pollination modes in Penstemon. Evolution 57:2742–2752. doi:10.1554/03-215
Cox PA, Elmqvist T (2000) Pollinator extinction in the Pacific Islands. Conserv Biol 14:1237–1239. doi:10.1046/j.1523-1739.2000.00017.x
Cruden RW (1972) Pollinators in high-elevation ecosystems: relative effectiveness of birds and bees. Science 176:1439–1440. doi:10.1126/science.176.4042.1439
Delgado-García JD (2000) Patterns of insect flower visitation in Lavandula buchii Webb (Lamiaceae), an endemic shrub of Tenerife (Canary Islands). J Nat Hist 34:2145–2155. doi:10.1080/002229300750022376
Dupont YL, Hansen DM, Rasmussen JT, Olesen JM (2004) Evolutionary changes in nectar sugar composition associated with switches between bird and insect pollination: the Canarian bird-flower element revisited. Funct Ecol 18:670–676. doi:10.1111/j.0269-8463.2004.00891.x
Feinsinger P, Wolfe JA, Swarm LA (1982) Island ecology: reduced hummingbird diversity and the pollination biology of plants, Trinidad and Tobago, West Indies. Ecology 63:494–506. doi:10.2307/1938966
Fishbein M, Venable DL (1996) Diversity and temporal change in the effective pollinators of Asclepias tuberosa. Ecology 77:1061–1073. doi:10.2307/2265576
Fumero-Cabán JJ, Meléndez-Ackerman EJ (2007) Relative pollination effectiveness of floral visitors of Pitcairnia angustifolia (Bromeliaceae). Am J Bot 94:419–424. doi:10.3732/ajb.94.3.419
Gómez JM, Zamora R (1999) Generalization vs. specialization in the pollination system of Hormathophylla spinosa (Crucifera). Ecology 80:796–805. doi:10.1890/0012-9658-080-2
Gómez JM, Bosch J, Perfectti F, Fernández J, Abdelaziz M (2007) Pollinator diversity affects plant reproduction and recruitment: the tradeoffs of generalization. Oecologia 153:597–605. doi:10.1007/s00442-007-0758-3
Guillou H, Carracedo JC, Paris R, Pérèz Torrado JP (2004) Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth Planet Sci Lett 222:599–614. doi:10.1016/j.epsl.2004.03.012
Herrera CM (1987) Components of pollinator “quality”: comparative analysis of a diverse insect assemblage. Oikos 50:79–90. doi:10.2307/3565403
Herrera CM (1988) Variation in mutualisms: the spatio-temporal mosaic of a pollinator assemblage. Biol J Linn Soc 35:95–125. doi:10.1111/j.1095-8312.1988.tb00461.x
Herrera CM (1989) Pollinator abundance, morphology, and flower visitation rate: analysis of the “quantity” component in a plant-pollinator system. Oecologia 80:241–248. doi:10.1007/BF00380158
Inoue K (1993) Evolution of mutualism in plant-pollinator interactions on islands. J Biosci 18:525–536. doi:10.1007/BF02703084
Ivey CT, Martinez P, Wyatt R (2003) Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnata (Apocynaceae). Am J Bot 90:214–225. doi:10.3732/ajb.90.2.214
Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant-animal interactions. Ecol Lett 6:69–81. doi:10.1046/j.1461-0248.2003.00403.x
Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci USA 106:9322–9327. doi:10.1073/pnas.0810306106
Larsson M (2005) Higher pollinator effectiveness by specialist than generalist flower-visitors of unspecialised Knauita arvensis (Dipsacaceae). Oecologia 146:394–403. doi:10.1007/s00442-005-0217-y
Linhart YB, Feinsinger P (1980) Plant-hummingbird interactions: effects of island size and degree of specialization on pollination. J Ecol 68:745–760. doi:10.2307/2259454
Mayfield MM, Waser NM, Price MV (2001) Exploring the “most effective pollinator principle” with complex flowers: bumblebees and Ipomopsis aggregata. Ann Bot 88:591–596. doi:10.1006/anbo.2001.1500
Molina-Borja M (1985) Spatial and temporal behavior of Gallotia galloti in a natural population of Tenerife. Bonn Zool Beitr 36:541–552
Ne’eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A (2010) A framework for comparing pollinator performance: effectiveness and efficiency. Biol Rev 85:435–451. doi:10.1111/j.1469-185X.2009.00108.x
Ness JH, Morris WF, Bronstein JL (2006) Integrating quality and quantity of mutualistic service to contrast ant species protecting Ferocactus wislizeni. Ecology 87:912–921. doi:10.1890/0012-9658872.0.2
Olesen JM (1985) The Macaronesian bird-flower element and its relation to bird and bee opportunists. Bot J Linn Soc 91:395–414. doi:10.1111/j.1095-8339.1985.tb01010.x
Olesen JM, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–2424. doi:10.2307/3071803
Olesen JM, Valido A (2003) Lizards as pollinators and seed dispersers: an island phenomenon. Trends Ecol Evol 18:177–181. doi:10.1016/S0169-5347(03)00004-1
Olesen JM, Valido A (2004) Lizards and birds as generalized pollinators and seed dispersers of island plants. In: Fernández-Palacios JM, Morici C (eds) Ecología insular/island ecology. Asociación Española de Ecología Terrestre (AEET) and Cabildo Insular de La Palma, Madrid, pp 229–249
Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896. doi:10.1073/pnas.0706375104
Ollerton J, Cranmer L, Stelzer RJ, Sullivan S, Chittka L (2009) Bird pollination of Canary Island endemic plants. Naturwissenschaften 96:221–232. doi:10.1007/s00114-008-0467-8
Pough H (1973) Lizard energetics and diet. Ecology 54:837–844. doi:10.2307/1935678
Primack RB, Silander JA (1975) Measuring relative importance of different pollinators to plants. Nature 255:143–144. doi:10.1038/255143a0
R Development Core Team (2011) R: A language and environment for statistical computing, version 2.13.0. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org.
Reynolds RJ, Fenster CB (2008) Point and interval estimation of pollinator importance: a study using pollination data of Silene caroliniana. Oecologia 156:325–332. doi:10.1007/s00442-008-0982-5
Robertson AW, Ladley JJ, Kelly D (2005) Effectiveness of short-tongued bees as pollinators of apparently ornithophilous New Zealand mistletoes. Aust Ecol 30:298–309. doi:10.1111/j.1442-9993.2005.01474.x
Rodríguez-Rodríguez MC, Valido A (2008) Opportunistic nectar-feeding birds are effective pollinators of bird-flowers from Canary Islands: experimental evidence from Isoplexis canariensis (Scrophulariaceae). Am J Bot 95:1408–1415. doi:10.3732/ajb.0800055
Santos A (1990) Bosques de laurisilva en la región macaronésica. Nature and Environmental Series, 49. Council of Europe, Strasbourg
Sazima I, Sazima C, Sazima M (2009) A catch-all leguminous tree: Erythrina velutina visited and pollinated by vertebrates at an oceanic island. Aust J Bot 57:26–30. doi:10.1071/BT08179
Schemske DW, Horvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–521. doi:10.1126/science.225.4661.519
Schueller SK (2004) Self-pollination in island and mainland populations of the introduced hummingbird-pollinated plant, Nicotiana glauca (Solanaceae). Am J Bot 91:672–681. doi:10.3732/ajb.91.5.672
Schupp EW (1993) Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 107/108:15–29
Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188:333–353. doi:10.1111/j.1469-8137.2010.03402.x
Spears EE (1987) Island and mainland pollination ecology of Centrosema virginianum and Opuntia stricta. J Ecol 75:351–362. doi:10.2307/2260423
Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Annu Rev Ecol Evol Syst 1:307–326. doi:10.1146/annurev.es.01.110170.001515
Steenhuisen SL, Van der Bank H, Johnson SD (2012) The relative contributions of insect and bird pollinators to outcrossing in an african Protea (Proteaceae). Am J Bot 99:1104–1111. doi:10.3732/ajb.1100535
Stevens PF (2001 onwards). Angiosperm Phylogeny Website. Version 12, July 2012. http://www.mobot.org/MOBOT/research/APweb/
Tscheulin T, Neokosmidis L, Petanidou T, Settele J (2011) Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves. Bull Entomol Res 101:557–564. doi:10.1017/S0007485311000149
Valido A, Nogales M (1994) Frugivory and seed dispersal by the lizard Gallotia galloti (Lacertidae) in a xeric habitat of the Canary Islands. Oikos 70:403–411. doi:10.2307/3545778
Valido A, Nogales M (2003) Digestive ecology of two omnivorous Canarian lizard species (Gallotia, Lacertidae). Amphibia-Reptilia 24:331–344. doi:10.1163/156853803322440790
Valido A, Olesen JM (2010) Pollination on islands: examples from the Macaronesian archipelagos. In: Serrano ARM, Borges PAV, Boieiro M, Oromí P (eds) Terrestrial arthropods of Macaronesia. Biodiversity, ecology and evolution. Sociedade Portuguesa de Entomologia, Lisbon, pp 249–283
Valido A, Dupont YL, Hansen DM (2002) Native birds and insects, and introduced honey bees visiting Echium wildpretii (Boraginaceae) in the Canary Islands. Acta Oecol 23:413–419. doi:10.1016/S1146-609X(02)01167-0
Vaughton G (1992) Effectiveness of nectarivorous birds and honeybees as pollinators of Banksia spinulosa (Proteaceae). Aust J Ecol 17:43–50. doi:10.1111/j.1442-9993.1992.tb00779.x
Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094. doi:10.1111/j.1461-0248.2005.00810.x
Vogel S, Westerkamp C, Thiel B, Gessner K (1984) Ornithophilie auf den Canarischen Inseln. Plant Syst Evol 146:225–248. doi:10.1007/BF00989548
Waser NM, Price MV (1990) Pollination efficiency and effectiveness of bumble bees and hummingbirds visiting Delphinium nelsonii. Collect Bot 19:9–20
Waser NM, Chittka L, Price M, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060. doi:10.2307/2265575
Zamora R (2000) Functional equivalence in plant-animal interactions: ecological and evolutionary consequences. Oikos 88:442–447. doi:10.1034/j.1600-0706.2000.880222.x
Acknowledgments
The authors thank especially A. M. Rodríguez and D. Rodríguez, R. Pedrianes, M. Carrión and the forest guards of Teno Rural Park for their technical support. The Island Ecology and Biogeography Research Group (La Laguna University), Anna Traveset and the Terrestrial Ecology Group (IMEDEA-CSIC) and the city council of Buenavista del Norte helped with logistics. Sampling permits were granted by the Department of Sustainability, Territory and Environment of the Cabildo Insular de Tenerife. Jens M. Olesen provided us generously with the images of the pollinators P. canariensis and G. galloti visiting the flowers of I. canariensis (Online Resource 1). Comments by Eugene W. Schupp, Steven D. Johnson and two anonymous referees greatly improved the manuscript. The study was supported by a predoctoral fellowship to M. C. R. from the Consejo Superior de Investigaciones Científicas (I3P I3PPRE_06_00019 CSIC), a postdoctoral grant to A. V. from the Ministerio de Ciencia e Innovación (RYC-2007-00620), and funds to P. J. from the Junta de Andalucía (Excellence grants P07-RNM0284, RNM-573). The experiments performed in this study comply with the current Spanish laws.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Steven Johnson.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Rodríguez-Rodríguez, M.C., Jordano, P. & Valido, A. Quantity and quality components of effectiveness in insular pollinator assemblages. Oecologia 173, 179–190 (2013). https://doi.org/10.1007/s00442-013-2606-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00442-013-2606-y
Keywords
- Bird pollination
- Canary Islands
- Lizard pollination
- Opportunistic nectar-feeding
- Plant reproductive biology