Oecologia

, Volume 173, Issue 1, pp 179–190

Quantity and quality components of effectiveness in insular pollinator assemblages

  • María C. Rodríguez-Rodríguez
  • Pedro Jordano
  • Alfredo Valido
Plant-animal interactions - Original research

Abstract

Ecologically isolated habitats (e.g., oceanic islands) favor the appearance of small assemblages of pollinators, generally characterized by highly contrasted life modes (e.g., birds, lizards), and opportunistic nectar-feeding behavior. Different life modes should promote a low functional equivalence among pollinators, while opportunistic nectar feeding would lead to reduced and unpredictable pollination effectiveness (PE) compared to more specialized nectarivores. Dissecting the quantity (QNC) and quality (QLC) components of PE, we studied the opportunistic bird–lizard pollinator assemblage of Isoplexis canariensis from the Canary Islands to experimentally evaluate these potential characteristics. Birds and lizards showed different positions in the PE landscape, highlighting their low functional equivalence. Birds were more efficient than lizards due to higher visitation frequency (QNC). Adult lizards differed from juveniles in effecting a higher production of viable seeds (QLC). The disparate life modes of birds and lizards resulted in ample intra- and inter-specific PE variance. The main sources of PE variance were visitation frequency (both lizards and birds), number of flowers probed (lizards) and proportion of viable seeds resulting from a single visit (birds). The non-coincident locations of birds and lizards on the PE landscape indicate potential constraints for effectiveness. Variations in pollinator abundance can result in major effectiveness shifts only if QLC is relatively high, while changes in QLC would increase PE substantially only at high QNC. The low functional equivalence of impoverished, highly contrasted pollinator assemblages may be an early diagnostic signal for pollinator extinction potentially driving the collapse of mutualistic services.

Keywords

Bird pollination Canary Islands Lizard pollination Opportunistic nectar-feeding Plant reproductive biology 

Supplementary material

442_2013_2606_MOESM1_ESM.pdf (4.4 mb)
Supplementary material 1 (PDF 4474 kb)
442_2013_2606_MOESM2_ESM.pdf (129 kb)
Supplementary material 2 (PDF 129 kb)
442_2013_2606_MOESM3_ESM.pdf (75 kb)
Supplementary material 3 (PDF 75 kb)
442_2013_2606_MOESM4_ESM.pdf (121 kb)
Supplementary material 4 (PDF 121 kb)

References

  1. Abe H, Ueno S, Tsumura Y, Hasegawa M (2011) Expanded home range of pollinator birds facilitates greater pollen flow of Camellia japonica in a forest heavily damaged by volcanic activity. In: Isagi Y, Suyama Y (eds) Single-pollen genotyping. Springer, Tokyo, pp 47–62. doi: 10.1007/978-4-431-53901-8_5
  2. Aigner PA (2001) Optimality modeling and fitness trade-offs: when should plants become pollinator specialists? Oikos 95:177–184. doi:10.1034/j.1600-0706.2001.950121.x CrossRefGoogle Scholar
  3. Aizen MA, Harder LD (2007) Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology 88:271–281. doi:10.1890/06-1017 PubMedCrossRefGoogle Scholar
  4. Alström P, Ericson PGP, Olsson U, Sundberg P (2006) Phylogeny and classification of the avian superfamily Sylvioidea. Mol Phylogenet Evol 38:381–397. doi:10.1016/j.ympev.2005.05.015 PubMedCrossRefGoogle Scholar
  5. Anderson SH, Kelly D, Ladley JJ, Molloy S, Terry J (2011) Cascading effects of bird functional extinction reduce pollination and plant density. Science 331:1068–1071. doi:10.1126/science.1199092 PubMedCrossRefGoogle Scholar
  6. Armbruster WS, Fenster CB, Dudash MR (2000) Pollination “principles” revisited: specialization, pollination syndromes, and the evolution of flowers. Det Norske Videnskapsakademia. I. Matematisk Naturvidenskapelige Klasse, Skrifter 39:139–148Google Scholar
  7. Bañares A, Blanco A, Castroviejo M, Fernández López A, Gandullo JM, Muñoz L, Sánchez Palomares O, Serrada R (1991) Estudio ecológico de la laurisilva canaria. ICONA, MadridGoogle Scholar
  8. Bronstein JL, Wilson WG, Morris WF (2003) Ecological dynamics of mutualist/antagonist communities. Am Nat 162:S24–S39. doi:10.1086/378645 PubMedCrossRefGoogle Scholar
  9. Castellanos MC, Wilson P, Thomson JD (2003) Pollen transfer by hummingbirds and bumblebees, and the divergence of pollination modes in Penstemon. Evolution 57:2742–2752. doi:10.1554/03-215 PubMedGoogle Scholar
  10. Cox PA, Elmqvist T (2000) Pollinator extinction in the Pacific Islands. Conserv Biol 14:1237–1239. doi:10.1046/j.1523-1739.2000.00017.x CrossRefGoogle Scholar
  11. Cruden RW (1972) Pollinators in high-elevation ecosystems: relative effectiveness of birds and bees. Science 176:1439–1440. doi:10.1126/science.176.4042.1439 PubMedCrossRefGoogle Scholar
  12. Delgado-García JD (2000) Patterns of insect flower visitation in Lavandula buchii Webb (Lamiaceae), an endemic shrub of Tenerife (Canary Islands). J Nat Hist 34:2145–2155. doi:10.1080/002229300750022376 CrossRefGoogle Scholar
  13. Dupont YL, Hansen DM, Rasmussen JT, Olesen JM (2004) Evolutionary changes in nectar sugar composition associated with switches between bird and insect pollination: the Canarian bird-flower element revisited. Funct Ecol 18:670–676. doi:10.1111/j.0269-8463.2004.00891.x CrossRefGoogle Scholar
  14. Feinsinger P, Wolfe JA, Swarm LA (1982) Island ecology: reduced hummingbird diversity and the pollination biology of plants, Trinidad and Tobago, West Indies. Ecology 63:494–506. doi:10.2307/1938966 CrossRefGoogle Scholar
  15. Fishbein M, Venable DL (1996) Diversity and temporal change in the effective pollinators of Asclepias tuberosa. Ecology 77:1061–1073. doi:10.2307/2265576 CrossRefGoogle Scholar
  16. Fumero-Cabán JJ, Meléndez-Ackerman EJ (2007) Relative pollination effectiveness of floral visitors of Pitcairnia angustifolia (Bromeliaceae). Am J Bot 94:419–424. doi:10.3732/ajb.94.3.419 PubMedCrossRefGoogle Scholar
  17. Gómez JM, Zamora R (1999) Generalization vs. specialization in the pollination system of Hormathophylla spinosa (Crucifera). Ecology 80:796–805. doi:10.1890/0012-9658-080-2 Google Scholar
  18. Gómez JM, Bosch J, Perfectti F, Fernández J, Abdelaziz M (2007) Pollinator diversity affects plant reproduction and recruitment: the tradeoffs of generalization. Oecologia 153:597–605. doi:10.1007/s00442-007-0758-3 PubMedCrossRefGoogle Scholar
  19. Guillou H, Carracedo JC, Paris R, Pérèz Torrado JP (2004) Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth Planet Sci Lett 222:599–614. doi:10.1016/j.epsl.2004.03.012 CrossRefGoogle Scholar
  20. Herrera CM (1987) Components of pollinator “quality”: comparative analysis of a diverse insect assemblage. Oikos 50:79–90. doi:10.2307/3565403 CrossRefGoogle Scholar
  21. Herrera CM (1988) Variation in mutualisms: the spatio-temporal mosaic of a pollinator assemblage. Biol J Linn Soc 35:95–125. doi:10.1111/j.1095-8312.1988.tb00461.x CrossRefGoogle Scholar
  22. Herrera CM (1989) Pollinator abundance, morphology, and flower visitation rate: analysis of the “quantity” component in a plant-pollinator system. Oecologia 80:241–248. doi:10.1007/BF00380158 Google Scholar
  23. Inoue K (1993) Evolution of mutualism in plant-pollinator interactions on islands. J Biosci 18:525–536. doi:10.1007/BF02703084 CrossRefGoogle Scholar
  24. Ivey CT, Martinez P, Wyatt R (2003) Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnata (Apocynaceae). Am J Bot 90:214–225. doi:10.3732/ajb.90.2.214 PubMedCrossRefGoogle Scholar
  25. Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant-animal interactions. Ecol Lett 6:69–81. doi:10.1046/j.1461-0248.2003.00403.x CrossRefGoogle Scholar
  26. Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci USA 106:9322–9327. doi:10.1073/pnas.0810306106 PubMedCrossRefGoogle Scholar
  27. Larsson M (2005) Higher pollinator effectiveness by specialist than generalist flower-visitors of unspecialised Knauita arvensis (Dipsacaceae). Oecologia 146:394–403. doi:10.1007/s00442-005-0217-y PubMedCrossRefGoogle Scholar
  28. Linhart YB, Feinsinger P (1980) Plant-hummingbird interactions: effects of island size and degree of specialization on pollination. J Ecol 68:745–760. doi:10.2307/2259454 CrossRefGoogle Scholar
  29. Mayfield MM, Waser NM, Price MV (2001) Exploring the “most effective pollinator principle” with complex flowers: bumblebees and Ipomopsis aggregata. Ann Bot 88:591–596. doi:10.1006/anbo.2001.1500 CrossRefGoogle Scholar
  30. Molina-Borja M (1985) Spatial and temporal behavior of Gallotia galloti in a natural population of Tenerife. Bonn Zool Beitr 36:541–552Google Scholar
  31. Ne’eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A (2010) A framework for comparing pollinator performance: effectiveness and efficiency. Biol Rev 85:435–451. doi:10.1111/j.1469-185X.2009.00108.x PubMedGoogle Scholar
  32. Ness JH, Morris WF, Bronstein JL (2006) Integrating quality and quantity of mutualistic service to contrast ant species protecting Ferocactus wislizeni. Ecology 87:912–921. doi:10.1890/0012-9658872.0.2 PubMedCrossRefGoogle Scholar
  33. Olesen JM (1985) The Macaronesian bird-flower element and its relation to bird and bee opportunists. Bot J Linn Soc 91:395–414. doi:10.1111/j.1095-8339.1985.tb01010.x CrossRefGoogle Scholar
  34. Olesen JM, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–2424. doi:10.2307/3071803 Google Scholar
  35. Olesen JM, Valido A (2003) Lizards as pollinators and seed dispersers: an island phenomenon. Trends Ecol Evol 18:177–181. doi:10.1016/S0169-5347(03)00004-1 CrossRefGoogle Scholar
  36. Olesen JM, Valido A (2004) Lizards and birds as generalized pollinators and seed dispersers of island plants. In: Fernández-Palacios JM, Morici C (eds) Ecología insular/island ecology. Asociación Española de Ecología Terrestre (AEET) and Cabildo Insular de La Palma, Madrid, pp 229–249Google Scholar
  37. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896. doi:10.1073/pnas.0706375104 PubMedCrossRefGoogle Scholar
  38. Ollerton J, Cranmer L, Stelzer RJ, Sullivan S, Chittka L (2009) Bird pollination of Canary Island endemic plants. Naturwissenschaften 96:221–232. doi:10.1007/s00114-008-0467-8 PubMedCrossRefGoogle Scholar
  39. Pough H (1973) Lizard energetics and diet. Ecology 54:837–844. doi:10.2307/1935678 CrossRefGoogle Scholar
  40. Primack RB, Silander JA (1975) Measuring relative importance of different pollinators to plants. Nature 255:143–144. doi:10.1038/255143a0 CrossRefGoogle Scholar
  41. R Development Core Team (2011) R: A language and environment for statistical computing, version 2.13.0. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org.
  42. Reynolds RJ, Fenster CB (2008) Point and interval estimation of pollinator importance: a study using pollination data of Silene caroliniana. Oecologia 156:325–332. doi:10.1007/s00442-008-0982-5 PubMedCrossRefGoogle Scholar
  43. Robertson AW, Ladley JJ, Kelly D (2005) Effectiveness of short-tongued bees as pollinators of apparently ornithophilous New Zealand mistletoes. Aust Ecol 30:298–309. doi:10.1111/j.1442-9993.2005.01474.x CrossRefGoogle Scholar
  44. Rodríguez-Rodríguez MC, Valido A (2008) Opportunistic nectar-feeding birds are effective pollinators of bird-flowers from Canary Islands: experimental evidence from Isoplexis canariensis (Scrophulariaceae). Am J Bot 95:1408–1415. doi:10.3732/ajb.0800055 PubMedCrossRefGoogle Scholar
  45. Santos A (1990) Bosques de laurisilva en la región macaronésica. Nature and Environmental Series, 49. Council of Europe, StrasbourgGoogle Scholar
  46. Sazima I, Sazima C, Sazima M (2009) A catch-all leguminous tree: Erythrina velutina visited and pollinated by vertebrates at an oceanic island. Aust J Bot 57:26–30. doi:10.1071/BT08179 CrossRefGoogle Scholar
  47. Schemske DW, Horvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–521. doi:10.1126/science.225.4661.519 PubMedCrossRefGoogle Scholar
  48. Schueller SK (2004) Self-pollination in island and mainland populations of the introduced hummingbird-pollinated plant, Nicotiana glauca (Solanaceae). Am J Bot 91:672–681. doi:10.3732/ajb.91.5.672 PubMedCrossRefGoogle Scholar
  49. Schupp EW (1993) Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 107/108:15–29Google Scholar
  50. Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188:333–353. doi:10.1111/j.1469-8137.2010.03402.x PubMedCrossRefGoogle Scholar
  51. Spears EE (1987) Island and mainland pollination ecology of Centrosema virginianum and Opuntia stricta. J Ecol 75:351–362. doi:10.2307/2260423 CrossRefGoogle Scholar
  52. Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Annu Rev Ecol Evol Syst 1:307–326. doi:10.1146/annurev.es.01.110170.001515 CrossRefGoogle Scholar
  53. Steenhuisen SL, Van der Bank H, Johnson SD (2012) The relative contributions of insect and bird pollinators to outcrossing in an african Protea (Proteaceae). Am J Bot 99:1104–1111. doi:10.3732/ajb.1100535 PubMedCrossRefGoogle Scholar
  54. Stevens PF (2001 onwards). Angiosperm Phylogeny Website. Version 12, July 2012. http://www.mobot.org/MOBOT/research/APweb/
  55. Tscheulin T, Neokosmidis L, Petanidou T, Settele J (2011) Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves. Bull Entomol Res 101:557–564. doi:10.1017/S0007485311000149 PubMedCrossRefGoogle Scholar
  56. Valido A, Nogales M (1994) Frugivory and seed dispersal by the lizard Gallotia galloti (Lacertidae) in a xeric habitat of the Canary Islands. Oikos 70:403–411. doi:10.2307/3545778 CrossRefGoogle Scholar
  57. Valido A, Nogales M (2003) Digestive ecology of two omnivorous Canarian lizard species (Gallotia, Lacertidae). Amphibia-Reptilia 24:331–344. doi:10.1163/156853803322440790 CrossRefGoogle Scholar
  58. Valido A, Olesen JM (2010) Pollination on islands: examples from the Macaronesian archipelagos. In: Serrano ARM, Borges PAV, Boieiro M, Oromí P (eds) Terrestrial arthropods of Macaronesia. Biodiversity, ecology and evolution. Sociedade Portuguesa de Entomologia, Lisbon, pp 249–283Google Scholar
  59. Valido A, Dupont YL, Hansen DM (2002) Native birds and insects, and introduced honey bees visiting Echium wildpretii (Boraginaceae) in the Canary Islands. Acta Oecol 23:413–419. doi:10.1016/S1146-609X(02)01167-0 CrossRefGoogle Scholar
  60. Vaughton G (1992) Effectiveness of nectarivorous birds and honeybees as pollinators of Banksia spinulosa (Proteaceae). Aust J Ecol 17:43–50. doi:10.1111/j.1442-9993.1992.tb00779.x CrossRefGoogle Scholar
  61. Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094. doi:10.1111/j.1461-0248.2005.00810.x CrossRefGoogle Scholar
  62. Vogel S, Westerkamp C, Thiel B, Gessner K (1984) Ornithophilie auf den Canarischen Inseln. Plant Syst Evol 146:225–248. doi:10.1007/BF00989548 CrossRefGoogle Scholar
  63. Waser NM, Price MV (1990) Pollination efficiency and effectiveness of bumble bees and hummingbirds visiting Delphinium nelsonii. Collect Bot 19:9–20CrossRefGoogle Scholar
  64. Waser NM, Chittka L, Price M, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060. doi:10.2307/2265575 CrossRefGoogle Scholar
  65. Zamora R (2000) Functional equivalence in plant-animal interactions: ecological and evolutionary consequences. Oikos 88:442–447. doi:10.1034/j.1600-0706.2000.880222.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • María C. Rodríguez-Rodríguez
    • 1
  • Pedro Jordano
    • 1
  • Alfredo Valido
    • 1
  1. 1.Integrative Ecology GroupEstación Biológica de Doñana (EBD-CSIC)Isla de la CartujaSpain

Personalised recommendations