, Volume 173, Issue 1, pp 45–57 | Cite as

Tradeoffs in basal area growth and reproduction shift over the lifetime of a long-lived tropical species

  • Christina L. Staudhammer
  • Lúcia H. O. Wadt
  • Karen A. Kainer
Physiological ecology - Original research


Understanding of the extent to which reproductive costs drive growth largely derives from reproductively mature temperate trees in masting and non-masting years. We modeled basal area increment (BAI) and explored current growth–reproduction tradeoffs and changes in such allocation over the life span of a long-lived, non-masting tropical tree. We integrated rainfall and soil variables with data from 190 Bertholletia excelsa trees of different diameter at breast height (DBH) sizes, crown characteristics, and liana loads, quantifying BAI and reproductive output over 4 and 6 years, respectively. While rainfall explains BAI in all models, regardless of DBH class or ontogenic stage, light (based on canopy position and crown form) is most critical in the juvenile (5 cm ≤ DBH < 50 cm) phase. Suppressed trees are only present as juveniles and grow ten times slower (1.45 ± 2.73 m2 year−1) than trees in dominant and co-dominant positions (13.25 ± 0.82 and 12.90 ± 1.35 m2 year−1, respectively). Additionally, few juvenile trees are reproductive, and those that are, demonstrate reduced growth, as do reproductive trees in the next 50 to 100 cm DBH class, suggesting growth–reproduction tradeoffs. Upon reaching the canopy, however, and attaining a sizeable girth, this pattern gradually shifts to one where BAI and reproduction are influenced independently by variables such as liana load, crown size and soil properties. At this stage, BAI is largely unaffected by fruit production levels. Thus, while growth–reproduction tradeoffs clearly exist during early life stages, effects of reproductive allocation diminish as B. excelsa increases in size and maturity.


Bertholletia excelsa Dendrometer bands Fruit production Non-masting Tropical forest 


  1. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Pretrov BN, Csaki FF (eds) Proceedings of the Second International Symposium on Information Theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  2. Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–2PubMedCrossRefGoogle Scholar
  3. Brienen RJW, Zuidema PA (2006) Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol 94:481–493CrossRefGoogle Scholar
  4. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  5. Camargo PB, Salomão RP, Trumbore S, Martinelli LA (1994) How old are large Brazil-nut trees (Bertholletia excelsa) in the Amazon? Scientia Agricola 51:389–391Google Scholar
  6. Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 5–55CrossRefGoogle Scholar
  7. Clark DA, Clark DB (1992) Life-history diversity of canopy and emergent trees in a neotropical rain-forest. Ecol Monogr 62:315–344CrossRefGoogle Scholar
  8. Clark DB, Clark DA (1996) Abundance, growth and mortality of very large trees in neotropical lowland rain forest. For Ecol Manage 80:235–244CrossRefGoogle Scholar
  9. Denslow JS, Schultz JC, Vitousek PM, Strain BR (1990) Growth-responses of tropical shrubs to treefall gap environments. Ecology 71:165–179CrossRefGoogle Scholar
  10. Diniz TD de AS, Bastos TX (1974) Contribuição ao conhecimento do clima típico da castanha do Brasil. Boletim Técnico. Instituto de Pesquisas e Experimentação Agropecuárias do Norte 64:59–7Google Scholar
  11. EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária (1997) Manual de métodos de análise de solos, 2ª edn. Centro Nacional de Pesquisa em Solos, Rio de JaneiroGoogle Scholar
  12. FUNTAC—Fundação de Tecnologia do Estado do Acre (2008) Atlas do estado do Acre. FUNTAC, Rio BrancoGoogle Scholar
  13. Gama JRNF, Kushaba T, Ota T, Amano Y (1992) Influência de material vulcânico em alguns solos do estado do Acre. Rev Bras Ciência do Solo 16:103–106Google Scholar
  14. Harper JL, White J (1974) The demography of plants. Ann Rev Ecol Syst 5:419–463CrossRefGoogle Scholar
  15. Herrera C, Jordano P, Guitian J, Ttaveset A (1998) Annual variability in seed production by wood plants and the masting concept: reassessment of principles and relationship to pollination and seed dispersal. Am Nat 152:576–594PubMedCrossRefGoogle Scholar
  16. IMAC—Instituto de Meio Ambiente do Acre (1991) Atlas geográfico ambiental do Acre. IMAC, Rio BrancoGoogle Scholar
  17. Janzen DH (1974) Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica 7:347–391Google Scholar
  18. Janzen DH (1976) Why bamboos wait so long to flower. Annu Rev Ecol Syst 7:347–391CrossRefGoogle Scholar
  19. Kainer KA, Wadt LHO, Gomes-Silva DAP, Capanu M (2006) Liana loads and their association with Bertholletia excelsa fruit and nut production, diameter growth and crown attributes. J Trop Ecol 22:147–154CrossRefGoogle Scholar
  20. Kainer KA, Wadt LHO, Staudhammer CL (2007) Explaining variation in Brazil nut fruit production. For Ecol Manage 250:244–255CrossRefGoogle Scholar
  21. Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9:465–470PubMedCrossRefGoogle Scholar
  22. Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where? Ann Rev Ecol Syst 33:427–447CrossRefGoogle Scholar
  23. King DA, Davies SJ, Supardi MNN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct Ecol 19:445–453CrossRefGoogle Scholar
  24. Knops JMH, Koenig WD, Carmen WJ (2007) Negative correlation does not imply a tradeoff between growth and reproduction in California oaks. Proc Natl Acad Sci USA 104:16982–16985PubMedCrossRefGoogle Scholar
  25. Koenig WD, Knops JMH (2000) Patterns of annual seed production by northern hemisphere trees: a global perspective. Am Nat 155(1):59–69PubMedCrossRefGoogle Scholar
  26. Koenig WD, Mumme RL, Carmen WJ, Stanback MT (1994) Acorn production by oaks in central coastal California: variation within an among years. Ecology 75:99–109CrossRefGoogle Scholar
  27. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute Inc., CaryGoogle Scholar
  28. Maués MM (2002) Reproductive phenology and pollination of the Brazil nut tree (Bertholletia excelsa Humb. & Bonpl. Lecythidaceae) in Eastern Amazonia. In: Kevan P, Imperatriz Fonseca VL (eds) Pollinating bees: the conservation link between agriculture and nature. Ministry of the Environment, Brasilia, Brazil, pp 245–254Google Scholar
  29. Monks A, Kelly D (2006) Testing the resource-matching hypothesis in the mast seeding tree Nothofagus truncate (Fagaceae). Austral Ecol 31:366–375CrossRefGoogle Scholar
  30. Newberry DM, Chuyong GB, Zimmermann L (2006) Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource-limitation hypothesis. New Phytol 170:561–579CrossRefGoogle Scholar
  31. O’Malley DM, Buckley DP, Prance GT, Bawa KS (1988) Genetics of Brazil nut (Bertholletia excelsa Humb. & Bonpl.: lecythidaceae). Theor Appl Genet 76:929–932CrossRefGoogle Scholar
  32. Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348CrossRefGoogle Scholar
  33. Oliver CD, Larson BC (1996) Forest stand dynamics, update edition. Wiley, New YorkGoogle Scholar
  34. Pélissier R, Pascal J-P (2000) Two-year tree growth patterns investigated from monthly girth records using dendrometer bands in a wet evergreen forest in India. J Trop Ecol 16:429–446CrossRefGoogle Scholar
  35. Poorter L, Kitajima K (2007) Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88:1000–1011PubMedCrossRefGoogle Scholar
  36. Prance GT (1990) Bertholletia. In: Mori SA, Prance GT (eds) Lecythidaceae-Part II: the zygomorphic-flowered New World genera. Flora Neotropica Monograph 21. New York Botanical Garden, Bronx, New York, pp 114–118Google Scholar
  37. Rüger N, Berger U, Hubbell SP, Vieilledent G, Condit R (2011a) Growth strategies of tropical tree species: disentangling light and size effects. PLoS ONE 6:1–10CrossRefGoogle Scholar
  38. Rüger N, Huth A, Hubbell SP, Condit R (2011b) Determinants of mortality across a tropical lowland rainforest community. Oikos 120:1047–1056CrossRefGoogle Scholar
  39. Sánchez-Humanes B, Sork VL (2011) Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy. Oecologia 166:101–110PubMedCrossRefGoogle Scholar
  40. Schabenberger O, Pierce FJ (2001) Contemporary statistical models for the plant and soil sciences. CRC Press, Boca RatonCrossRefGoogle Scholar
  41. Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230CrossRefGoogle Scholar
  42. Sutherland S (1986) Patterns of fruit-set: what controls fruit-flower ratios in plants? Evolution 40:117–128CrossRefGoogle Scholar
  43. Synnott TJ (1979) A manual of permanent sample plot procedures for tropical rainforests. Tropical Forestry Papers No. 14. Commonwealth Forestry Institute, University of Oxford, OxfordGoogle Scholar
  44. Thomas SC (2011) Age-related changes in tree growth and functional biology: the role if reproduction. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. 1st edn. Tree Physiol 4, Springer, New York, pp 33–64Google Scholar
  45. Tonini H (2011) Fenologia da castanheira-do-brasil (Bertholletia excelsa Humb. & Bonpl., Lecythidaceae) no Sul do Estado de Roraima. Cerne 17:123–131Google Scholar
  46. Souza C Jr, Veríssimo, A, Silva Costa A de, Salomão Reis R, Balieiro C, Ribeiro J (2006) Dinâmica do desmatamento no estado do Acre (1988-2004). IMAZON (Instituto do Homen e Meio Ambiento da Amazônia), Belém, Pará, BrazilGoogle Scholar
  47. Vieira S, de Camargo PB, Selhorst D, da Silva R, Hutyra L, Chambers JQ, Brown IF, Higuchi N, dos Santos J, Wofsy SC, Trumbore SE, Martinelli LA (2004) Forest structure and carbono dynamics in Amazonian tropical rain forests. Oecologia 140:468–479PubMedCrossRefGoogle Scholar
  48. Vieira S, Trumbore S, Camargo PB, Selhorst D, Chambers JQ, Higuchi N (2005) Slow growth rates of Amazonian trees: consequences for carbon cycling. Proc Natl Acad Sci USA 102:18502–18507PubMedCrossRefGoogle Scholar
  49. Wadt LHO, Kainer KA, Gomes-Silva DAP (2005) Population structure and nut yield of a Bertholletia excelsa stand in Southwestern Amazonia. For Ecol Manage 211:371–384CrossRefGoogle Scholar
  50. Wright SJ, Muller-Landau HC, Calderon O, Hernandéz A (2005) Annual and spatial variation in seedfall and seedling recruitment in a neotropical forest. Ecology 86:848–860CrossRefGoogle Scholar
  51. Yasumura Y, Hikosaka K, Hirose T (2006) Resource allocation to vegetative and reproductive growth in relation to mast seeding in Fagus crenata. For Ecol Manage 229:228–233CrossRefGoogle Scholar
  52. Zoneamento Ecológico-Econômico do Acre (ZEE) (2000) Recursos naturais e meio ambiente. Volume I. Secretaria de Estado de Ciência, Tecnologia e Meio Ambiente, Rio Branco, Acre, BrazilGoogle Scholar
  53. Zuidema PA (2003) Ecology and management of the Brazil nut tree (Bertholletia excelsa). PROMAB (Programa Manejo de Bosques de la Amazonia Boliviana), Ribertalta, BoliviaGoogle Scholar
  54. Zuidema PA, Boot RGA (2002) Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon: impact of seed extraction on recruitment and population dynamics. J Trop Ecol 18:1–31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christina L. Staudhammer
    • 1
  • Lúcia H. O. Wadt
    • 2
  • Karen A. Kainer
    • 3
    • 4
  1. 1.Department of Biological SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Centro de Pesquisa Agroflorestal do Acre (Embrapa Acre)Rio BrancoBrazil
  3. 3.School of Forest Resources and ConservationUniversity of FloridaGainesvilleUSA
  4. 4.Center for Latin American StudiesUniversity of FloridaGainesvilleUSA

Personalised recommendations