Skip to main content
Log in

Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species

Oecologia Aims and scope Submit manuscript

Cite this article

Abstract

Phenological events, such as the initiation and the end of seasonal growth, are thought to be under strong evolutionary control because of their influence on tree fitness. Although numerous studies highlighted genetic differentiation in phenology among populations from contrasting climates, it remains unclear whether local adaptation could restrict phenological plasticity in response to current warming. Seedling populations of seven deciduous tree species from high and low elevations in the Swiss Alps were investigated in eight common gardens located along two elevational gradients from 400 to 1,700 m. We addressed the following questions: are there genetic differentiations in phenology between populations from low and high elevations, and are populations from the upper elevational limit of a species’ distribution able to respond to increasing temperature to the same extent as low-elevation populations? Genetic variation of leaf unfolding date between seedlings from low and high populations was detected in six out of seven tree species. Except for beech, populations from high elevations tended to flush later than populations from low elevations, emphasizing that phenology is likely to be under evolutionary pressure. Furthermore, seedlings from high elevation exhibited lower phenological plasticity to temperature than low-elevation provenances. This difference in phenological plasticity may reflect the opposing selective forces involved (i.e. a trade-off between maximizing growing season length and avoiding frost damages). Nevertheless, environmental effects were much stronger than genetic effects, suggesting a high phenological plasticity to enable tree populations to track ongoing climate change, which includes the risk of tracking unusually warm springs followed by frost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acevedo-Rodriguez R, Vargas-Hernandez JJ, Lopez-Upton J, Mendoza JV (2006) Effect of geographic origin and nutrition on shoot phenology of Mexican Douglas-fir (Pseudotsuga sp.) seedlings. Agrociencia 40:125–137

    Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111. doi:10.1111/J.1752-4571.2007.00013.X

    Article  Google Scholar 

  • Alberto F, Niort J, Derory J, Lepais O, Vitalis R, Galop D, Kremer A (2010) Population differentiation of sessile oak at the altitudinal front of migration in the French Pyrenees. Mol Ecol 19:2626–2639. doi:10.1111/j.1365-294X.2010.04631.x

    Article  PubMed  CAS  Google Scholar 

  • Alberto F, Bouffier L, Louvet JM, Lamy JB, Delzon S, Kremer A (2011) Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. J Evol Biol 24:1442–1454. doi:10.1111/j.1420-9101.2011.02277.x

    Article  PubMed  CAS  Google Scholar 

  • Augspurger CK (2008) Early spring leaf out enhances growth and survival of saplings in a temperate deciduous forest. Oecologia 156:281–286. doi:10.1007/s00442-008-1000-7

    Article  PubMed  Google Scholar 

  • Baliuckas V, Pliura A (2003) Genetic variation and phenotypic plasticity of Quercus robur populations and open-pollinated families in Lithuania. Scand J For Res 18:305–319. doi:10.1080/02827580310005153

    Article  Google Scholar 

  • Baliuckas V, Lagerstrom T, Norell L, Erksson G (2005) Genetic variation among and within populations in Swedish species of Sorbus aucuparia L. and Prunus padus L. assessed in a nursery trial. Silvae Genet 54:1–8

    Google Scholar 

  • Barnett PE, Farmer RE Jr (1980) Altitudinal variation in juvenile characteristics of southern Appalachian black cherry (Prunus serotina Ehrh.). Silvae Genet 29:157–160

    Google Scholar 

  • Basler D, Körner C (2012) Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric For Meteorol. doi:10.1016/j.agrformet.2012.06.001

  • Billington HL, Pelham J (1991) Genetic-variation in the date of budburst in scottish birch populations—implications for climate change. Funct Ecol 5:403–409

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  • Bresson CC, Vitasse Y, Kremer A, Delzon S (2011) To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiol 31:1164–1174. doi:10.1093/treephys/tpr084

    Article  PubMed  CAS  Google Scholar 

  • Broadhead JS, Ong CK, Black CR (2003) Tree phenology and water availability in semi-arid agroforestry systems. For Ecol Manag 180:61–73. doi:10.1016/S0378-1127(02)00602-3

    Article  Google Scholar 

  • Caffarra A, Donnelly A (2011) The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int J Biometeorol 55:711–721. doi:10.1007/s00484-010-0386-1

    Article  PubMed  Google Scholar 

  • Charrier G, Ameglio T (2011) The timing of leaf fall affects cold acclimation by interactions with air temperature through water and carbohydrate contents. Environ Exp Bot 72:351–357. doi:10.1016/j.envexpbot.2010.12.019

    Article  Google Scholar 

  • Chmura DJ, Rozkowski R (2002) Variability of beech provenances in spring and autumn phenology. Silvae Genet 51:123–127

    Google Scholar 

  • Chuine I (2010) Why does phenology drive species distribution? Philos Trans R Soc Lond B 365:3149–3160. doi:10.1098/rstb.2010.0142

    Article  Google Scholar 

  • Cufar K, De Luis M, Saz MA, Crepinsek Z, Kajfez-Bogataj L (2012) Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees Struct Funct. doi:10.1007/s00468-012-0686-7

  • Davi H, Gillmann T, Cailleret M, Bontemps A, Fady B, Lefèvre F (2011) Diversity of leaf unfolding dynamics among tree species: new insights from a study along an altitudinal gradient. Agric For Meteorol 151:1504–1513. doi:10.1016/J.Agrformet.2011.06.008

    Article  Google Scholar 

  • Doi H, Takahashi M, Katano I (2010) Genetic diversity increases regional variation in phenological dates in response to climate change. Glob Change Biol 16:373–379. doi:10.1111/j.1365-2486.2009.01993.x

  • Gomory D, Paule L (2011) Trade-off between height growth and spring flushing in common beech (Fagus sylvatica L.). Ann For Sci 68:975–984. doi:10.1007/s13595-011-0103-1

    Article  Google Scholar 

  • Heide OM (1993) Dormancy release in beech Buds (Fagus sylvatica) requires both chilling and long days. Physiol Plant 89:187–191

    Article  Google Scholar 

  • Heide OM (2011) Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. J Exp Bot. doi:10.1093/jxb/err213

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485. doi:10.1038/nature09670

    Article  PubMed  CAS  Google Scholar 

  • Howe GT, Saruul P, Davis J, Chen THH (2000) Quantitative genetics of bud phenology, frost damage, and winter survival in an F-2 family of hybrid poplars. Theor Appl Genet 101:632–642

    Article  Google Scholar 

  • Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen THH (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J Bot 81:1247–1266. doi:10.1139/B03-141

    Article  CAS  Google Scholar 

  • Hurme P, Repo T, Savolainen O, Paakkonen T (1997) Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Can J For Res 27:716–723

    Article  Google Scholar 

  • Jump AS, Matyas C, Penuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701. doi:10.1016/j.tree.2009.06.007

    Article  PubMed  Google Scholar 

  • Kollas C, Vitasse Y, Randin CF, Hoch G, Korner C (2012) Unrestricted quality of seeds in European broad-leaved tree species growing at the cold boundary of their distribution. Ann Bot 109:473–480. doi:10.1093/aob/mcr299

    Article  PubMed  CAS  Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514. doi:10.1016/s0169-5347(00)02004-8

    Article  Google Scholar 

  • Kramer K (1995) Phenotypic plasticity of the phenology of seven European tree species in relation to climatic warming. Plant Cell Environ 18:93–104

    Article  Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392. doi:10.1111/j.1461-0248.2012.01746.x

    Article  Google Scholar 

  • Langlet O (1971) Two hundred years gynaecology. Taxon 20:653–722

    Article  Google Scholar 

  • Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, Ulrich E (2010) Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models. Int J Biometeorol 54:563–581. doi:10.1007/s00484-010-0305-5

    Article  PubMed  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstrom M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. doi:10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • Molmann JA, Asante DKA, Jensen JB, Krane MN, Ernstsen A, Junttila O, Olsen JE (2005) Low night temperature and inhibition of gibberellin biosynthesis override phytochrome action and induce bud set and cold acclimation, but not dormancy in PHYA overexpressors and wild-type of hybrid aspen. Plant Cell Environ 28:1579–1588. doi:10.1111/j.1365-3040.2005.01395.x

    Article  Google Scholar 

  • Morgenstern EK (1996) Geographic variation in forest trees: genetic basis and application of knowledge in silviculture. University of British Columbia Press, Vancouver

    Google Scholar 

  • Oleksyn J, Modrzynski J, Tjoelker MG, Zytkowiak R, Reich PB, Karolewski P (1998) Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct Ecol 12:573–590

    Article  Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367. doi:10.1242/jeb.02070

    Article  PubMed  Google Scholar 

  • Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–941. doi:10.1111/j.1469-8137.2011.03803.x

    Article  PubMed  Google Scholar 

  • Premoli AC, Raffaele E, Mathiasen P (2007) Morphological and phenological differences in Nothofagus pumilio from contrasting elevations: evidence from a common garden. Austral Ecol 32:515–523. doi:10.1111/j.1442-9993.2007.01720.x

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Change Biol 8:912–929

    Article  Google Scholar 

  • Rohde A, Bastien C, Boerjan W (2011) Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Tree Physiol 31:472–482. doi:10.1093/treephys/tpr038

    Article  PubMed  Google Scholar 

  • Savolainen O, Pyhajarvi T, Knurr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619. doi:10.1146/annurev.ecolsys.38.091206.095646

    Article  Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst 17:667–693. doi:10.1146/annurev.ecolsys.17.1.667

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1993) Control of phenotypic plasticity via regulatory genes. Am Nat 142:366–370

    Article  PubMed  CAS  Google Scholar 

  • Sharik TL, Barnes BV (1976) Phenology of shoot growth among diverse populations of yellow birch (Betula alleghaniensis) and sweet birch (B. lenta). Can J Bot 54:2122–2129

    Article  Google Scholar 

  • Soularue J-P, Kremer A (2012) Assortative mating and gene flow generate clinal phenological variation in trees. BMC Evol Biol 12:79. doi:10.1186/1471-2148-12-79

    Article  PubMed  Google Scholar 

  • Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR (2010) Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol Biol 73:49–65. doi:10.1007/s11103-010-9610-y

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD (1991) Phenotypic plasticity as a component of evolutionary change. Trends Ecol Evol 6:246–249. doi:10.1016/0169-5347(91)90070-e

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen OP, Julkunen-Tiitto R (2003) Phenological variation as protection against defoliating insects: the case of Quercus robur and Operophtera brumata. Oecologia 136:244–251. doi:10.1007/S00442-003-1267-7

    Article  PubMed  Google Scholar 

  • van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55. doi:10.1146/annurev.ento.52.110405.091418

    Article  PubMed  Google Scholar 

  • Vitasse Y, Delzon S, Bresson CC, Michalet R, Kremer A (2009a) Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Can J For Res 39:1259–1269. doi:10.1139/X09-054

    Article  Google Scholar 

  • Vitasse Y, Delzon S, Dufrene E, Pontailler JY, Louvet JM, Kremer A, Michalet R (2009b) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744. doi:10.1016/j.agrformet.2008.10.019

    Article  Google Scholar 

  • Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Funct Ecol 24:1211–1218. doi:10.1111/j.1365-2435.2010.01748.x

    Article  Google Scholar 

  • Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Körner C (2012) Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. J Biogeogr. doi:10.1111/j.1365-2699.2012.02697.x

  • vonWuehlisch G, Krusche D, Muhs HJ (1995) Variation in temperature sum requirement for flushing of beech provenances. Silvae Genet 44:343–346

    Google Scholar 

  • Wang TL, O’Neill GA, Aitken SN (2010) Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol Appl 20:153–163. doi:10.1890/08-2257.1

    Article  PubMed  CAS  Google Scholar 

  • Wareing PF (1953) Growth studies in woody species. V. Photoperiodism in dormant buds of Fagus sylvatica. Physiol Plant 6:692–706

    Article  Google Scholar 

  • Wesolowski T, Rowinski P (2008) Late leaf development in pedunculate oak (Quercus robur): an antiherbivore defence? Scand J For Res 23:386–394. doi:10.1080/02827580802419026

    Article  Google Scholar 

  • Willi Y, Van Buskirk J, Schmid B, Fischer M (2007) Genetic isolation of fragmented populations is exacerbated by drift and selection. J Evol Biol 20:534–542. doi:10.1111/j.1420-9101.2006.01263.x

    Article  PubMed  CAS  Google Scholar 

  • Williams JL, Auge H, Maron JL (2008) Different gardens, different results: native and introduced populations exhibit contrasting phenotypes across common gardens. Oecologia 157:239–248. doi:10.1007/s00442-008-1075-1

    Article  PubMed  Google Scholar 

  • Worrall J (1983) Temperature–bud-burst relationships in amabilis and subalpine fir provenance tests replicated at different elevations. Silvae Genet 32:203–209

    Google Scholar 

Download references

Acknowledgments

We are grateful to Serge Ricciardelli and Roger Frei for their assistance in the field for monitoring spring phenology. We wish to thank Fernando Koostella, Snorri Örn Rafnsson, Lea Steinle, Pascale Flury, Martin Trischler and José Monteiro for their help in the construction and maintenance of the common gardens. We are also grateful to the Swiss Army for logistic help to move the containers to all common gardens, as well as the municipality of Bex, Lavey-Morcles and Haldenstein and the local foresters for their great support. The research leading to these results has been funded by the European Research Council (ERC) grant 233399 (project TREELIM). We are grateful to two anonymous reviewers for their valuable comments improving a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Vitasse.

Additional information

Communicated by Russell Monson.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vitasse, Y., Hoch, G., Randin, C.F. et al. Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia 171, 663–678 (2013). https://doi.org/10.1007/s00442-012-2580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2580-9

Keywords

Navigation