Skip to main content

Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake

Abstract

The velamen radicum, a spongy, usually multiple epidermis of the roots, which at maturity consists of dead cells, is frequently described as an important adaptation of epiphytic orchids. Yet, quantitative evidence for the alleged functions, e.g., efficient water and nutrient uptake, nutrient retention, reduction of water loss, mechanical protection, or the avoidance of overheating, is rare or missing. We tested the notion originally put forward by Went in 1940 that the velamen allows plants to capture and immobilize the first solutions arriving in a rainfall, which are the most heavily charged with nutrients. In a series of experiments, we examined whether all necessary functional characteristics are given for this scenario to be realistic under ecological conditions. First, we show that the velamen of a large number of orchid species takes up solutions within seconds, while evaporation from the velamen takes several hours. Charged ions are retained in the velamen probably due to positive and negative charges in the cell walls, while uncharged compounds are lost to the external medium. Finally, we demonstrate that nutrient uptake follows biphasic kinetics with a highly efficient, active transport system at low external concentrations. Thus, our results lend strong support to Went’s hypothesis: the velamen fulfills an important function in nutrient uptake in the epiphytic habitat. Most of the other functions outlined above still await similar experimental scrutiny.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Antibus RK, Lesica P (1990) Root surface acid phosphatase activities of vascular epiphytes of a Costa Rican rain forest. Plant Soil 128:233–240

    Article  CAS  Google Scholar 

  • Bates JW (1989) Retention of added K, Ca and P by Pseudoscleropodium purum growing under an oak canopy. J Bryol 15:589–605

    Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH (1996) Aerial roots and their environments. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 875–894

    Google Scholar 

  • Benzing DH (2000) Bromeliaceae—profile of an adaptive radiation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH, Ott DW, Friedman WE (1982) Roots of Sobralia macrantha (Orchidaceae): structure and function of the velamen–exodermis complex. Am J Bot 69:608–614

    Article  Google Scholar 

  • Böttger M, Soll H, Gasche A (1980) Modification of the external pH by maize coleoptlies and velamen radicum of Vanilla planifolia. Z Pflanzenphysiol 48:81–96

    Google Scholar 

  • Brundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Capesius I, Barthlott W (1975) Isotopen-Markierungen und rasterelektronenmikroskopische Untersuchungen am Velamen radicum der Orchideen. Z Pflanzenphysiol 75:436–448

    Google Scholar 

  • Dahlmann L, Persson J, Palmquist K, Näsholm T (2004) Organic and inorganic nitrogen uptake in lichens. Planta 129:459–467

    Google Scholar 

  • Dycus AM, Knudson L (1957) The role of the velamen of the aerial roots of orchids. Bot Gaz 119:78–87

    Article  Google Scholar 

  • Gillet C, Lefebvre J (1980) Estimation of anion-exchange capacity of cell walls of Nitella flexilis. J Exp Bot 32:37–41

    Article  Google Scholar 

  • Goebel K (1921) Erdwurzeln mit Velamen. Flora 115:1–26

    Google Scholar 

  • Goh CJ, Kluge M (1989) Gas exchange and water relations in epiphytic orchids. In: Lüttge U (ed) Vascular plants as epiphytes: evolution and ecophysiology, vol 76. Springer, Heidelberg, pp 139–166

    Chapter  Google Scholar 

  • Haas NF (1975) 32P, 22N, und 99Tc in Versuchen über den Wassertransport in Luftwurzeln von Vanda tricolor Lindl. Z Pflanzenphysiol 75:427–435

    CAS  Google Scholar 

  • Haberlandt GFJ (1914) Physiological plant anatomy. Macmillan, London

    Google Scholar 

  • Hájek T, Adamec L (2009) Mineral nutrient economy in competing species of Sphagnum mosses. Ecol Res 24:291–302

    Article  Google Scholar 

  • Helbsing S, Riederer M, Zotz G (2000) Cuticles of vascular epiphytes: efficient barriers for water loss after stomatal closure? Ann Bot 86:765–769

    Article  Google Scholar 

  • Inselsbacher E, Cambui CA, Richter A, Stange CF, Mercier H, Wanek W (2007) Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantea. New Phytol 175:311–320

    PubMed  Article  CAS  Google Scholar 

  • Jordan PW, Nobel PS (1984) Thermal and water relations of roots of desert succulents. Ann Bot 54:705–717

    Google Scholar 

  • Läuchli A, Epstein E (1970) Transport of potassium and rubidium in plant roots: the significance of calcium. Plant Physiol 45:639–641

    PubMed  Article  Google Scholar 

  • Link HF (1824) Elementa philosophiae botanicae. Haude & Spenersche, Berlin

    Google Scholar 

  • Lüttge U (1997) Physiological ecology of tropical plants. Springer, Berlin

    Book  Google Scholar 

  • Mulay BN, Deshpande BU, Williams HP (1958) Study of velamen in some epiphytic and terrestrial orchids. J Indian Bot Soc 37:123–127

    Google Scholar 

  • Porembski S, Barthlott W (1995) On the occurrence of a velamen radicum in Cyperaceae and Velloziaceae. Nordic J Bot 15:625–629

    Article  Google Scholar 

  • Pridgeon AM (1987) The velamen and exodermis of orchid roots. In: Arditti J (ed) Orchid biology. Reviews and perspectives IV. Cornell University Press, Ithaca, pp 139–192

    Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Richardson BA, Rogers C, Richardson MJ (2000) Nutrients, diversity and community structure of two phytotelm systems in a lower montane forest, Puerto Rico. Ecol Entomol 25:348–356

    Article  Google Scholar 

  • Richter C, Dainty J (1989) Ion behavior in plant cell walls. I. Characterization of the Sphagnum russowii cell wall ion exchanger. Can J Bot 67:451–459

    Article  CAS  Google Scholar 

  • Roth-Nebelsick A (2009) Pull, push and evaporate. The role of surfaces in plant water transport. In: Gorb S (ed) Functional surfaces in biology. Little structures with big effects, vol 1. Springer, Berlin, pp 141–162

  • Sanford WW, Adanlawo FLS, Adanlawo I (1973) Velamen and exodermis characters of west African epiphytic orchids in relation to taxonomic grouping and habitat tolerance. Bot J Linn Soc 66:307–321

    Article  Google Scholar 

  • Tsavkelova EA, Lobakova ES, Kolomeitseva GL, Cherdyntseva TA, Netrusov AI (2003) Associative cyanobacteria isolated from the roots of epiphytic orchids. Microbiology 72:92–97

    Article  CAS  Google Scholar 

  • Wallach A (1939) Beiträge zur Kenntnis der Wasseraufnahme durch die Luftwurzeln tropischer Orchideen. Z Bot 33:433–468

    Google Scholar 

  • WCSP (2012) World checklist of selected plant families. Facilitated by the Royal Botanic Gardens, Kew. http://apps.kew.org/wcsp/. Retrieved 2 Feb 2012

  • Went FW (1940) Soziologie der Epiphyten eines tropischen Regenwaldes. Ann Jard Bot Buitenzorg 50:1–98

    Google Scholar 

  • Winkler U, Zotz G (2009) Highly efficient uptake of phosphorus in epiphytic bromeliads. Ann Bot 103:477–484

    PubMed  Article  CAS  Google Scholar 

  • Winkler U, Zotz G (2010) “And then there were three”: highly efficient uptake of potassium by foliar trichomes of epiphytic bromeliads. Ann Bot 106:421–427

    PubMed  Article  CAS  Google Scholar 

  • Yen W-Y, Chang Y-CA, Wang Y-T (2011) The acidification of Sphagnum moss substrate during Phalaenopsis cultivation. Hortscience 46:1022–1026

    Google Scholar 

  • Zotz G, Hietz P (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot 52:2067–2078

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Inga Schul and Niels Plump (both University Oldenburg) for technical help. Constructive comments of two anonymous reviewers on an earlier version helped to improve the clarity of the paper. We acknowledge permits to export plant material from Panama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Zotz.

Additional information

Communicated by Russell Monson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9768 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zotz, G., Winkler, U. Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171, 733–741 (2013). https://doi.org/10.1007/s00442-012-2575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2575-6

Keywords

  • Cation exchange capacity
  • Epiphytes
  • Phosphorus
  • Potassium