Oecologia

, Volume 172, Issue 4, pp 983–993 | Cite as

Physiological costs enforce the honesty of lek display in the black grouse (Tetrao tetrix)

  • Christophe Lebigre
  • Rauno V. Alatalo
  • Heli Siitari
Behavioral ecology - Original research

Abstract

Females may use condition-dependent sexual traits as reliable cues of male “quality” if the costs of the expression of such traits vary with male “quality”, and if there is positive genetic correlation between male traits and condition. However, there are multiple ways of measuring the changes in body condition which reflect physiological costs meaning that the multifaceted nature of the physiological costs associated with the expression of sexual traits has rarely been thoroughly examined. In the lekking black grouse (Tetrao tetrix), mating success is highly skewed towards males defending central territories and having high survival rates to the following year, but the mechanisms underpinning such superior performance remain unclear. In this study, we quantified the changes in five measures of body condition before and after the mating season and related these changes to male lek performance (fighting rate, territory centrality and mating success) to understand the physiological costs of male reproductive effort. Between the two capture sessions, male body mass decreased significantly, blood parasite counts and plasma carotenoid concentration increased substantially while the total immunoglobulin concentration tended to increase. There was no overall impairment of individual body condition as the changes in the five measures of body condition were unrelated. Male fighting rate was unrelated to changes in the condition measures but males losing more body mass defended central territories and had high mating success. Therefore, females preferring central, dominant males may select males better able to afford the energetic costs of lek performance thereby effectively enforcing the honesty of male display.

Keywords

Body mass Carotenoids Mating success Parasite load Sexual selection 

References

  1. Alatalo RV, Höglund J, Lundberg A (1991) Lekking in the black grouse—a test of male viability. Nature 352:155–156. doi:10.1038/352155a0 CrossRefGoogle Scholar
  2. Alonso JC, Magaña M, Palacín C, Martín CA (2010) Correlates of male mating success in great bustard leks: the effects of age, weight, and display effort. Behav Ecol Sociobiol 64:1589–1600. doi:10.1007/s00265-010-0972-6 CrossRefGoogle Scholar
  3. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and the dynamics of infectious diseases. Ecol Lett 9:467–484. doi:10.1111/j.1461-0248.2005.00879.x PubMedCrossRefGoogle Scholar
  4. Andersson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  5. Applegate JE (1970) Population changes in latent avian malaria infections associated with season and corticosterone treatment. J Parasitol 56:439–443. doi:10.2307/3277599 PubMedCrossRefGoogle Scholar
  6. Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003) Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300:125–127. doi:10.1126/science.1082142 PubMedCrossRefGoogle Scholar
  7. Bonneaud C, Mazuc J, González G, Haussy C, Chastel O (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379. doi:10.1086/346134 PubMedCrossRefGoogle Scholar
  8. Boutin S (1990) Food supplementation experiments with terrestrial vertebrates: patterns, problems, and the future. Can J Zool 68:203–220. doi:10.1139/z90-031 CrossRefGoogle Scholar
  9. Briffa M, Elwood RW (2001) Decision rules, energy metabolism and vigour of hermit-crab fights. Proc R Soc Lond B 268:1841–1848. doi:10.1098/rspb.2001.1752 CrossRefGoogle Scholar
  10. Brown ME (1996) Assessing body condition in birds. In: Nolan V, Ketterson ED (eds) Current Ornithology, vol 13. Plenum, New York, pp 67–135. doi:10.1007/978-1-4615-5881-1_3 CrossRefGoogle Scholar
  11. Cohen AA, McGraw KJ (2009) No simple measures for antioxidant status in birds: complexity in inter- and intraspecific correlations among circulating antioxidant types. Funct Ecol 23:310–320. doi:10.1111/j.1365-2435.2009.01540.x CrossRefGoogle Scholar
  12. Constantini D, Møller AP (2008) Carotenoids are minor antioxidants for birds. Funct Ecol 22:367–370. doi:10.1111/j.1365-2435.2007.01366.x CrossRefGoogle Scholar
  13. de Jong G, van Noordwijk AJ (1992) Acquisition and allocation of resources—genetic (co)variances, selection, and life histories. Am Nat 139:749–770. doi:10.1086/285356 CrossRefGoogle Scholar
  14. Desser SS, Fallis AM, Garnham PCC (1968) Relapse in ducks chronically infected with Leucocytozoon simondi and Parahaemoproteus nettionis. Can J Zool 46:281–285PubMedCrossRefGoogle Scholar
  15. Faivre B, Grégoire A, Préault M, Cézilly F, Sorci G (2003) Immune activation rapidly mirrored in a secondary sexual trait. Science 300:103. doi:10.1126/science.1081802 PubMedCrossRefGoogle Scholar
  16. Grafen A (1990) Biological signals as handicaps. J Theor Biol 144:517–546. doi:10.1016/S0022-5193(05)80088-8 PubMedCrossRefGoogle Scholar
  17. Hämäläinen A, Alatalo RV, Lebigre C, Siitari H, Soulsbury CD (2012) Fighting behaviour as a correlate of male mating success in black grouse Tetrao tetrix. Behav Ecol Sociobiol 66:1577–1586. doi:10.1007/s00265-012-1411-7 CrossRefGoogle Scholar
  18. Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387. doi:10.1126/science.7123238 PubMedCrossRefGoogle Scholar
  19. Harshman LG, Zera AJ (2007) The cost of reproduction: the devil in the details. Trends Ecol Evol 22:80–86. doi:10.1016/j.tree.2006.10.008 PubMedCrossRefGoogle Scholar
  20. Helminen M (1963) Composition of the Finnish populations of capercaillie, Tetrao urogallus, and black grouse, Lyrurus tetrix, in the autumns of 1952–1961, as revealed by a study of wings. Riistatiet Julk 8:142–149Google Scholar
  21. Hill GE, McGraw KJ (2006) Bird coloration. Vol. 1 Mechanisms and measurements. Harvard University Press, Cambridge Google Scholar
  22. Höglund J, Alatalo RV, Lundberg A (1992) The effect of parasites on male ornaments and female choice in the lek-breeding black grouse (Tetrao tetrix). Behav Ecol Sociobiol 30:71–76. doi:10.1007/BF00173942 CrossRefGoogle Scholar
  23. Höglund J, Johansson T, Pelabon C (1997) Behaviourally mediated sexual selection: characteristics of successful male black grouse. Anim Behav 54:255–264. doi:10.1006/anbe.1996.0459 CrossRefGoogle Scholar
  24. Hovi M, Alatalo RV, Höglund J, Lundberg A, Rintamäki PT (1994) Lek centre attracts black grouse females. Proc R Soc Lond B 258:303–305. doi:10.1098/rspb.1994.0177 CrossRefGoogle Scholar
  25. Kervinen M, Alatalo RV, Lebigre C, Siitari H, Soulsbury CD (2012) Determinants of yearling male performance in the lekking black grouse (Tetrao tetrix). Behav Ecol 23:1209–1217. doi:10.1093/beheco/ars104 Google Scholar
  26. Kokko H, Rintamäki PT, Alatalo RV, Höglund J, Karvonen E, Lundberg A (1999) Female choice selects for lifetime lekking performance in black grouse males. Proc R Soc Lond B 266:2109–2115. doi:10.1098/rspb.1999.0895 CrossRefGoogle Scholar
  27. Kotiaho JS (2001) Costs of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biol Rev 76:365–376. doi:10.1017/S1464793101005711 PubMedCrossRefGoogle Scholar
  28. Lebigre C, Alatalo RV, Siitari H, Parri S (2007) Restrictive mating by females on black grouse leks. Mol Ecol 16:4380–4389. doi:10.1111/j.1365-294X.2007.03502.x PubMedCrossRefGoogle Scholar
  29. Lebigre C, Alatalo RV, Kilpimaa JK, Staszewski V, Siitari H (2012) Leukocyte counts variation and measures of male fitness in the lekking black grouse. J Ornithol 153:95–102. doi:10.1007/s10336-011-0701-6 CrossRefGoogle Scholar
  30. Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121CrossRefGoogle Scholar
  31. Ludwig GX, Alatalo RV, Helle P, Siitari H (2010) Individual and environmental determinants of early brood survival in black grouse Tetrao tetrix. Wildl Biol 16:367–378. doi:10.2981/10-013 Google Scholar
  32. Martinez-Padilla J, Mougeot F, Perez-Rodriguez L, Bortolotti GR (2007) Nematode parasite reduce carotenoid-based signalling in male red grouse. Biol Lett 3:161–164. doi:10.1098/rsbl.2006.0593 PubMedCrossRefGoogle Scholar
  33. Martinez-Padilla J, Vergara P, Pérez-Rodriguez L, Mougeot F, Casas F, Ludwig SC, Haines JA, Zeineddine M, Redpath S (2011) Condition- and parasite-dependent expression of a male-like trait in a female bird. Biol Lett 7:364–367. doi:10.1098/rsbl.2010.0991 PubMedCrossRefGoogle Scholar
  34. McElligott AG, Naulty F, Clarke WV, Hayden TJ (2003) The somatic cost of reproduction: what determines reproductive effort in prime-aged fallow bucks? Evol Ecol Res 5:1239–1250Google Scholar
  35. McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712. doi:10.1086/378904 PubMedCrossRefGoogle Scholar
  36. Møller AP, Christe P, Lux E (1999) Parasitism, host immune function, and sexual selection. Q Rev Biol 74:3–20. doi:10.1086/392949 PubMedCrossRefGoogle Scholar
  37. Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult Biol Rev 11:137–159Google Scholar
  38. Mougeot F, Perez-Rodriguez L, Martinez-Padilla J, Redpath S, Leckie F (2007) Parasites, testosterone and honest carotenoid-based signaling of health. Funct Ecol 21:886–898. doi:10.1111/j.1365-2435.2007.01302.x CrossRefGoogle Scholar
  39. Mougeot F, Martinez-Padilla J, Webster LMI, Blount JD, Perez-Rodriguez L, Piertney SB (2009) Honest sexual signalling mediated by parasite and testosterone effects on oxidative balance. Proc R Soc Lond B 276:1093–1100. doi:10.1098/rspb.2008.1570 CrossRefGoogle Scholar
  40. Mougeot F, Martinez-Padilla J, Blount JD, Pérez-Rodriguez L, Webster LMI, Piertney SB (2010) Oxidative stress and the effect of parasites on a carotenoid-based ornament. J Exp Biol 213:400–407. doi:10.1242/jeb.037101 PubMedCrossRefGoogle Scholar
  41. Mysterud A, Solberg EJ, Yoccoz NG (2005) Ageing and reproductive effort in male moose under variable levels of intrasexual competition. J Anim Ecol 74:742–754. doi:10.1111/j.1365-2656.2005.00965.x CrossRefGoogle Scholar
  42. O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122. doi:10.1111/j.2041-210X.2010.00021.x CrossRefGoogle Scholar
  43. Owens IPF, Wilson K (1999) Immunocompetence: a neglected life history trait or conspicuous red herring? Trends Ecol Evol 14:170–172. doi:10.1016/S0169-5347(98)01580-8 CrossRefGoogle Scholar
  44. Peig J, Green AJ (2010) The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct Ecol 24:1323–1332. doi:10.1111/j.1365-2435.2010.01751.x CrossRefGoogle Scholar
  45. Pelletier F, Festa-Bianchet M (2006) Sexual selection and social rank in bighorn rams. Anim Behav 71:649–655. doi:10.1016/j.anbehav.2005.07.008 CrossRefGoogle Scholar
  46. Pihlaja M, Siitari H, Alatalo RV (2006) Maternal antibodies in a wild altricial bird: effects on offspring immunity, growth and survival. J Anim Ecol 75:1154–1164. doi:10.1111/j.1365-2656.2006.01136.x PubMedCrossRefGoogle Scholar
  47. Rätti O, Dufva R, Alatalo RV (1993) Blood parasites and male fitness in the pied flycatcher. Oecologia 96:410–414. doi:10.1007/BF00317512 CrossRefGoogle Scholar
  48. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ ISBN 3-900051-07-0
  49. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177 CrossRefGoogle Scholar
  50. Richner H, Christe P, Oppliger A (1995) Paternal investment affects prevalence of malaria. Proc Natl Acad Sci USA 92:1192–1194. doi:10.1073/pnas.92.4.1192 PubMedCrossRefGoogle Scholar
  51. Rintamäki PT, Karvonen E, Alatalo RV, Lundberg A (1999) Why do Black Grouse males perform on lek sites outside the breeding season? J Avian Biol 30:359–366. doi:10.2307/3677008 CrossRefGoogle Scholar
  52. Rintamäki PT, Höglund J, Alatalo RV, Lundberg A (2001) Correlates of male mating success on black grouse (Tetrao tetrix L.) leks. Ann Zool Fenn 38:99–109Google Scholar
  53. Rowe L, Houle D (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc Lond B 263:1415–1421. doi:10.1098/rspb.1996.0207 CrossRefGoogle Scholar
  54. Siitari H, Alatalo RV, Halme P, Buchanan KL, Kilpimaa J (2007) Color signals in the black grouse (Tetrao tetrix): signal properties and their condition dependency. Am Nat 169:S81–S92. doi:10.1086/510140 PubMedCrossRefGoogle Scholar
  55. Staszewski V, McKoy KD, Tveraa T, Boulinier T (2007) Interannual dynamics of antibody levels in naturally infected long-lived colonial birds. Ecology 88:3183–3191. doi:10.1890/07-0098.1 PubMedCrossRefGoogle Scholar
  56. Stearns SC (1992) The evolution of life histories. Oxford University Press, New YorkGoogle Scholar
  57. Stevenson RD, Woods WA Jr (2006) Condition indices for conservation: new uses for evolving tools. Integr Comp Biol 46:1169–1190. doi:10.1093/icb/icl052 PubMedCrossRefGoogle Scholar
  58. Tella JL, Negro JJ, Rodrígez-Estrella R, Blanco G, Forero MG, Blázquez MC, Hiraldo F (1998) A comparison of spectrophotometry and color charts for evaluating total plasma carotenoids in wild birds. Physiol Biochem Zool 71:708–711. doi:10.2307/30164403 Google Scholar
  59. Tomkins JL, Radwan J, Kotiaho JS, Tregenza T (2004) Genic capture and resolving the lek paradox. Trends Ecol Evol 19:323–328. doi:10.1016/j.tree.2004.03.029 PubMedCrossRefGoogle Scholar
  60. Turner WC, Versfeld WD, Kilian JW, Getz WM (2012) Synergistic effects of seasonal rainfall, parasites and demography on fluctuations in springbok body condition. J Anim Ecol 81:58–69. doi:10.1111/j.1365-2656.2011.01892.x PubMedCrossRefGoogle Scholar
  61. van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142. doi:10.1086/284547 CrossRefGoogle Scholar
  62. Vehrencamp SL, Bradbury JW, Gibson RM (1989) The energetic cost of display in male sage grouse. Anim Behav 38:885–896. doi:10.1016/S0003-3472(89)80120-4 CrossRefGoogle Scholar
  63. Viney ME, Riley EM, Buchanan KL (2005) Optimal immune responses: immunocompetence revisited. Trends Ecol Evol 20:665–669. doi:10.1016/j.tree.2005.10.003 PubMedCrossRefGoogle Scholar
  64. von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B 266:1–12. doi:10.1098/rspb.1999.0597 CrossRefGoogle Scholar
  65. Wedekind C, Følstad I (1994) Adaptive or nonadaptive immunosuppression by sex hormones? Am Nat 143:936–938. doi:10.1086/285641 CrossRefGoogle Scholar
  66. Zahavi A (1977) The cost of honesty—further remarks on the handicap principle. J Theor Biol 67:603–605PubMedCrossRefGoogle Scholar
  67. Zuk M, Stoehr AM (2002) Immune defense and host life history. Am Nat 160:S9–S22. doi:10.1086/342131 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christophe Lebigre
    • 1
    • 2
  • Rauno V. Alatalo
    • 1
  • Heli Siitari
    • 1
  1. 1.Department of Biological and Environmental Science, Centre of Excellence in Evolutionary ResearchUniversity of JyväskyläJyväskyläFinland
  2. 2.Biodiversity Research Centre, Earth and Life InstituteUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations