, Volume 172, Issue 3, pp 667–677 | Cite as

Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods

  • André T. C. DiasEmail author
  • Eveline J. Krab
  • Janine Mariën
  • Martin Zimmer
  • Johannes H. C. Cornelissen
  • Jacintha Ellers
  • David A. Wardle
  • Matty P. Berg
Physiological ecology - Original research


Predicted changes in soil water availability regimes with climate and land-use change will impact the community of functionally important soil organisms, such as macro-detritivores. Identifying and quantifying the functional traits that underlie interspecific differences in desiccation resistance will enhance our ability to predict both macro-detritivore community responses to changing water regimes and the consequences of the associated species shifts for organic matter turnover. Using path analysis, we tested (1) how interspecific differences in desiccation resistance among 22 northwestern European terrestrial isopod species could be explained by three underlying traits measured under standard laboratory conditions, namely, body ventral surface area, water loss rate and fatal water loss; (2) whether these relationships were robust to contrasting experimental conditions and to the phylogenetic relatedness effects being excluded; (3) whether desiccation resistance and hypothesized underlying traits could explain species distribution patterns in relation to site water availability. Water loss rate and (secondarily) fatal water loss together explained 90 % of the interspecific variation in desiccation resistance. Our path model indicated that body surface area affects desiccation resistance only indirectly via changes in water loss rate. Our results also show that soil moisture determines isopod species distributions by filtering them according to traits underpinning desiccation resistance. These findings reveal that it is possible to use functional traits measured under standard conditions to predict soil biota responses to water availability in the field over broad spatial scales. Taken together, our results demonstrate an increasing need to generate mechanistic models to predict the effect of global changes on functionally important organisms.


Detritivores Drought Functional traits Isopoda Soil moisture Water loss rate 



We thank Rudo Verweij for assistance in the laboratory, Herman Verhoef for constructive discussion and two anonymous reviewers for constructive comments and suggestions. A.T.C. Dias was financed by NWO postdoctoral grant no. NWO/819.01.017.

Supplementary material

442_2012_2541_MOESM1_ESM.doc (360 kb)
Supplementary material 1 (DOC 359 kb)


  1. Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct Ecol 24:1192–1201CrossRefGoogle Scholar
  2. Bahrndorff S, Holmstrup M, Petersen H, Loeschcke V (2006) Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta. J Insect Physiol 52:951–959PubMedCrossRefGoogle Scholar
  3. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and climate change. Oxford, OxfordGoogle Scholar
  4. Barrett JE, Virginia RA, Wall DH, Adams BJ (2008) Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem. Glob Change Biol 14:1734–1744CrossRefGoogle Scholar
  5. Berg MP, Soesbergen M, Tempelman D, Wijnhoven H (2008) Verspreidingsatlas Nederlandse landpissebedden, duizendpoten en miljoenpoten (Isopoda, Chilopoda, Diplopoda). European Invertebrate Survey, Leiden/VU University, AmsterdamGoogle Scholar
  6. Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165:553–565PubMedCrossRefGoogle Scholar
  7. Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910CrossRefGoogle Scholar
  8. Briones MJI, Ostle NJ, McNamara NR, Poskitt J (2009) Functional shifts of grassland soil communities in response to soil warming. Soil Biol Biochem 41:315–322CrossRefGoogle Scholar
  9. Chown SL (1993) Desiccation resistance in 6 sub-antarctic weevils (Coleoptera, Curculionidae)—humidity as an abiotic factor influencing assemblage structure. Funct Ecol 7:318–325CrossRefGoogle Scholar
  10. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380Google Scholar
  11. David JF, Handa IT (2010) The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biol Rev 85:881–895PubMedGoogle Scholar
  12. David JF, Vannier G (2001) Changes in desiccation resistance during development in the millipede Polydesmus angustus. Physiol Entomol 26:135–141CrossRefGoogle Scholar
  13. Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304Google Scholar
  14. Díaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689PubMedCrossRefGoogle Scholar
  15. Edney EB (1951) The evaporation of water from woodlice and the millipede Glomeris. J Exp Biol 28:91–115PubMedGoogle Scholar
  16. Ellers J, Dias ATC, Berg MP (2010) Interaction milieu explains performance of species in simple food webs along an environmental gradient. Open Ecol J 3:12–21CrossRefGoogle Scholar
  17. Emmerling C (1995) Long-term effects of inundation dynamics and agricultural land-use on the distribution of soil macrofauna in fluvisols. Biol Fertil Soils 20:130–136CrossRefGoogle Scholar
  18. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  19. Gregory S (2009) Woodlice and waterlice (Isopoda: Oniscidea & Asellota) in Britain and Ireland. Biological Records Centre. NERC Centre for Ecology and Hydrology, OxfordshireGoogle Scholar
  20. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910CrossRefGoogle Scholar
  21. Haacker U (1968) Deskriptive, experimentelle und vergleichende Untersuchungen zur Aut¨okologie rhein-mainischer Diplopoden. Oecologia 1:87–129CrossRefGoogle Scholar
  22. Heemsbergen DA, Berg MP, Loreau M, van Haj JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020PubMedCrossRefGoogle Scholar
  23. Holmstrup M, Loeschcke V (2003) Genetic variation in desiccation tolerance of Dendrobaena octaedra cocoons originating from different climatic regions. Soil Biol Biochem 35:119–124CrossRefGoogle Scholar
  24. Hood WG, Tschinkel WR (1990) Desiccation resistance in arboreal and terrestrial ants. Physiol Entomol 15:23–35CrossRefGoogle Scholar
  25. Hulshof CM, Swenson NG (2010) Variation in leaf functional trait values within and across individuals and species: an example from a Costa Rican dry forest. Funct Ecol 24:217–223CrossRefGoogle Scholar
  26. IPCC (2008) Climate change and water. In: Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, GenevaGoogle Scholar
  27. Kaersgaard CW, Holmstrup M, Malte H, Bayley M (2004) The importance of cuticular permeability, osmolyte production and body size for the desiccation resistance of nine species of Collembola. J Insect Physiol 50:5–15PubMedCrossRefGoogle Scholar
  28. Kattge J, Díaz S, Lavorel S, Prentice IC, Leadly P, Bonisch G et al (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935Google Scholar
  29. Langlands PR, Brennan KEC, Framenau VW, Main BY (2011) Predicting the post-fire responses of animal assemblages: testing a trait-based approach using spiders. J Anim Ecol 80:558–568PubMedCrossRefGoogle Scholar
  30. Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27(27):93–132CrossRefGoogle Scholar
  31. Makkonen M, Berg MP, van Hal JR, Callaghan TV, Press MC, Aerts R (2011) Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol Biochem 43:377–384CrossRefGoogle Scholar
  32. Maraldo K, Holmstrup M (2010) Enchytraeids in a changing climate: a mini-review. Pedobiologia 53:161–167CrossRefGoogle Scholar
  33. Maraldo K, Schmidt IK, Beier C, Holmstrup M (2008) Can field populations of the enchytraeid, Cognettia sphagnetorum, adapt to increased drought stress? Soil Biol Biochem 40:1765–1771CrossRefGoogle Scholar
  34. Maraldo K, Ravn H, Slotsbo S, Holmstrup M (2009) Responses to acute and chronic desiccation stress in Enchytraeus (Oligochaeta: Enchytraeidae). J Comp Physiol B Biochem Syst Environ Physiol 179:113–123CrossRefGoogle Scholar
  35. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185PubMedCrossRefGoogle Scholar
  36. Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893CrossRefGoogle Scholar
  37. Moretti M, de Bello F, Roberts SPM, Potts SG (2009) Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. J Anim Ecol 78:98–108PubMedCrossRefGoogle Scholar
  38. Moron-Rios A, Rodriguez MA, Perez-Camacho L, Rebollo S (2010) Effects of seasonal grazing and precipitation regime on the soil macroinvertebrates of a Mediterranean old-field. Eur J Soil Biol 46:91–96CrossRefGoogle Scholar
  39. Pagel MD (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442CrossRefGoogle Scholar
  40. Peltzer DA, Bellingham PJ, Kurokawa H, Walker LR, Wardle DA, Yeates GW (2009) Punching above their weight: low-biomass non-native plant species alter soil properties during primary succession. Oikos 118:1001–1014CrossRefGoogle Scholar
  41. Plum N (2005) Terrestrial invertebrates in flooded grassland: a literature review. Wetlands 25:721–737CrossRefGoogle Scholar
  42. Purse BV, Gregory SJ, Harding P, Roy HE (2012) Habitat use governs distribution patterns of saprophagous (litter-transforming) macroarthropods—a case study of British woodlice (Isopoda: Oniscidea). Eur J Entomol 109:543–552Google Scholar
  43. Quested H, Eriksson O, Fortunel C, Garnier E (2007) Plant traits relate to whole-community litter quality and decomposition following land use change. Funct Ecol 21:1016–1026CrossRefGoogle Scholar
  44. Roots BI (1956) The water relations of earthworms 2. Resistance to desiccation and immersion, and behaviour when submerged and when allowed a choice of environment. J Exp Biol 33:29–44Google Scholar
  45. Schamp B, Horsak M, Hajek M (2010) Deterministic assembly of land snail communities according to species size and diet. J Anim Ecol 79:803–810PubMedGoogle Scholar
  46. Schmalfuss H (2003) World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beiträge zur Naturkunde Serie A 654:341Google Scholar
  47. Schmidt C, Wägele JW (2001) Morphology and evolution of respiratory structures in the pleopod exopodites of terrestrial Isopoda (Crustacea, Isopoda, Oniscidea). Acta Zool 82:315–330CrossRefGoogle Scholar
  48. Sierwald P, Bond JE (2007) Current status of the myriapod class diplopoda (Millipedes): taxonomic diversity and phylogeny. Annu Rev Entomol 52:401–420PubMedCrossRefGoogle Scholar
  49. Suding KN, Lavorel S, Chapin FS III, Cornelissen JHC, Diáz S, Garnier E et al (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14:1125–1140Google Scholar
  50. Tsai ML, Dai CF, Chen HH (1998) Desiccation resistance of two semiterrestrial isopods, Ligia exotica and Ligia taiwanensis (Crustacea) in Taiwan. Comp Biochem Physiol Mol Integr Physiol 119:361–367CrossRefGoogle Scholar
  51. Vilisics F, Sólymos P, Hornung E (2007) A preliminary study on habitat features and associated terrestrial isopod species. In: Tajovský K, Schlaghamerský J, Pižl V (eds) Contributions to soil zoology in Central Europe II. Budapest, pp 195–199Google Scholar
  52. Villani MG, Allee LL, Diaz A, Robbins PS (1999) Adaptive strategies of edaphic arthropods. Annu Rev Entomol 44:233–256PubMedCrossRefGoogle Scholar
  53. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I et al (2007) Let the concept of trait be functional! Oikos 116:882–892Google Scholar
  54. Warburg MR (1989) The role of water in the life of terrestrial isopods. Monitore Zoologico Italiano 4:285–304Google Scholar
  55. Warburg MR (1993) Evolutionary biology of land isopods. Springer, BerlinCrossRefGoogle Scholar
  56. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton, New JerseyGoogle Scholar
  57. Wardle DA, Lagerstrom A, Nilsson MC (2008) Context dependent effects of plant species and functional group loss on vegetation invasibility across an island area gradient. J Ecol 96:1174–1186CrossRefGoogle Scholar
  58. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100PubMedCrossRefGoogle Scholar
  59. Webb CT, Hoeting JA, Ames GM, Pyne MI, Poff NL (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol Lett 13:267–283PubMedCrossRefGoogle Scholar
  60. White JJ, Zar JH (1968) Relationships between saturation deficit and survival and distribution of terrestrial isopods. Ecology 49:556–559CrossRefGoogle Scholar
  61. Wiescher PT, Pearce-Duvet JMC, Feener DH (2012) Assembling an ant community: species functional traits reflect environmental filtering. Oecologia 169:1063–1074PubMedCrossRefGoogle Scholar
  62. Wright JC, Machin J (1990) Water-vapor absorption in terrestrial isopods. J Exp Biol 154:13–30Google Scholar
  63. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • André T. C. Dias
    • 1
    Email author
  • Eveline J. Krab
    • 1
  • Janine Mariën
    • 1
  • Martin Zimmer
    • 2
  • Johannes H. C. Cornelissen
    • 1
  • Jacintha Ellers
    • 1
  • David A. Wardle
    • 3
  • Matty P. Berg
    • 1
  1. 1.Department of Ecological Science, Faculty of Earth and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.FB Organismische Biologie: Ökologie, Biodiversität & Evolution der TiereParis-Lodron-UniversitätSalzburgAustria
  3. 3.Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden

Personalised recommendations