Skip to main content
Log in

Parental resource and offspring liability: the influence of extrafloral nectar on oviposition by a leaf-mining moth

  • Plant-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

For many insect herbivores, maternal host selection is a critical determinant of offspring survival; however, maternal fitness is also affected by adult resources such as food availability. Consequently, adult resources may promote oviposition in sub-optimal locations when measured in terms of offspring performance. We tested whether oviposition site preference is primarily shaped by proximity to adult food resources or offspring performance in the aspen leaf miner (Phyllocnistis populiella). Quaking aspen (Populus tremuloides) produce extrafloral nectaries (EFNs) on a subset of their leaves. EFN expression on leaves is associated with decreased P. populiella damage and larval performance; however, P. populiella adults feed from EFNs. We reduced extrafloral nectar availability on entire aspen ramets and excluded crawling predators in a full factorial experiment at two sites in interior Alaska, USA. Patterns of egg deposition by P. populiella appeared to be primarily affected by offspring survival rather than adult resource availability. While oviposition was unaffected by nectar availability, adult moths laid fewer eggs on leaves with than without EFNs. By avoiding leaves with EFNs, moths increased offspring survival. Both moths and predators distinguished between leaves with and without EFNs even when nectar and visual cues were obscured, and therefore may respond to chemical cues associated with EFN expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atanassov A, Shearer PW (2005) Peach extrafloral nectar impacts life span and reproduction of adult Grapholita molesta (Busck) (Lepidoptera: Tortricidae). J Agric Urban Entomol 22:41–47

    Google Scholar 

  • Beach RM, Todd JW, Baker SH (1985) Nectaried and nectariless cotton cultivars as nectar sources for the adult soybean looper. J Entomol Sci 20:233–236

    Google Scholar 

  • Bentley BL (1977) Extrafloral nectaries and protection by pugnacious bodyguards. Annu Rev Ecol Syst 8:407–427. doi:10.1146/annurev.es.08.110177.002203

    Article  CAS  Google Scholar 

  • Bernays EA (1988) Host specificity in phytophagous insects: selection pressure from generalist predators. Entomol Exp Appl 49:131–140

    Article  Google Scholar 

  • Bernays EA, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892

    Article  Google Scholar 

  • Bestelmeyer BT (2005) Does desertification diminish biodiversity? Enhancement of ant diversity by shrub invasion in south-western USA. Divers Distrib 11:45–55. doi:10.1111/j.1366-9516.2005.00122.x

    Article  Google Scholar 

  • Bronstein JL, Alarcon R, Geber M (2006) The evolution of plant-insect mutualisms. New Phytol 172:412–428. doi:10.1111/j.1469-8137.2006.01864.x

    Article  PubMed  Google Scholar 

  • Chamberlain SA, Holland JN (2008) Density-mediated, context-dependent consumer resource interactions between ants and extrafloral nectar plants. Ecology 89:1364–1374. doi:10.1890/07-1139.1

    Article  PubMed  Google Scholar 

  • Condrashoff SF (1962) A description of the immature stages of Phyllocnistis populiella Chambers (Lepidoptera: Gracillariidae). Can Entomol 94:902–909

    Article  Google Scholar 

  • Condrashoff SF (1964) Bionomics of the aspen leaf miner, Phyllocnistis populiella Cham. (Lepidoptera: Gracillariidae). Can Entomol 96:857–874

    Article  Google Scholar 

  • Doak P, Wagner D, Watson A (2007) Variable extrafloral nectary expression and its consequences in quaking aspen. Can J Bot 85:1–9. doi:10.1139/b06-137

    Article  Google Scholar 

  • Finch S, Collier RH (2000) Host-plant selection by insects—a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol Exp Appl 96:91–102. doi:10.1046/j.1570-7458.2000.00684.x

    Article  Google Scholar 

  • Heil M (2004) Induction of two indirect defences benefits Lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92:527–536

    Article  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61. doi:10.1111/j.1469-8137.2007.02330.x

    Article  PubMed  CAS  Google Scholar 

  • Hering M (1951) Biology of the leaf miners. Junk, The Hague

    Google Scholar 

  • Honda K (1995) Chemical basis of differential oviposition by lepidopterous insects. Arch Insect Biochem Physiol 30:1–23

    Google Scholar 

  • Jaenike J (1986) Feeding behavior and future fecundity in Drosophila. Am Nat 127:118–123

    Article  Google Scholar 

  • Janz N, Bergström A, Sjögren A (2005) The role of nectar sources for oviposition decisions of the common blue butterfly Polyommatus icarus. Oikos 109:535–538

    Article  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  PubMed  CAS  Google Scholar 

  • Kolehmainen J, Roininen H, Julkunentiitto R, Tahvanainen J (1994) Importance of phenolic glucosodes in host selection of shoot galling sawfly, Euura amerinae, on Salix pentandra. J Chem Ecol 20:2455–2466

    Article  CAS  Google Scholar 

  • Kost C, Heil M (2005) Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus, Fabaceae). Basic Appl Ecol 6:237–248

    Article  Google Scholar 

  • Lukefahr MJ (1960) Effects of nectariless cottons on populations of three lepidopterous insects. J Econ Entomol 53:242–244

    Google Scholar 

  • Maafo IKA (1983) Factors affecting the relative abundance of arthropods on nectaried and nectariless cotton. Environ Entomol 12:349–352

    Google Scholar 

  • Mathews CR, Brown MW, Bottrell DG (2007) Leaf extrafloral nectaries enhance biological control of a key economic pest, Grapholita molesta (Lepidoptera: Tortricidae), in peach (Rosales: Rosaceae). Environ Entomol 36:383–389. doi:10.1603/0046-225x(2007)36[383:lenebc]2.0.co;2

    Article  PubMed  Google Scholar 

  • Mayhew PJ (1997) Adaptive patterns of host-plant selection by phytophagous insects. Oikos 79:417–428

    Article  Google Scholar 

  • Mortensen B, Wagner D, Doak P (2011) Defensive effects of extrafloral nectaries in quaking aspen differ with scale. Oecologia 165:983–993. doi:10.1007/s00442-010-1799-6

    Article  PubMed  Google Scholar 

  • Otto SB, Berlow EL, Rank NE, Smiley J, Brose U (2008) Predator diversity and identity drive interaction strength and trophic cascades in a food web. Ecology 89:134–144

    Article  PubMed  Google Scholar 

  • Patt JM, Pfannenstiel RS (2008) Odor-based recognition of nectar in cursorial spiders. Entomol Exp Appl 127:64–71. doi:10.1111/j.1570-7458.2008.00669.x

    Article  Google Scholar 

  • Piovia-Scott J (2011) The effect of disturbance on an ant-plant mutualism. Oecologia 166:411–420

    Article  PubMed  Google Scholar 

  • Radhika V, Kost C, Bartram S, Heil M, Boland W (2008) Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds. Planta 228:449–457

    Article  PubMed  CAS  Google Scholar 

  • Rudgers JA (2004) Enemies of herbivores can shape plant traits: selection in a facultative ant-plant mutualism. Ecology 85:192–205. doi:10.1890/02-0625

    Article  Google Scholar 

  • Ruhren S, Handel SN (1999) Jumping spiders (Salticidae) enhance the seed production of a plant with extrafloral nectaries. Oecologia 119:227–230

    Article  Google Scholar 

  • Scheirs J, De Bruyn L (2002) Integrating optimal foraging and optimal oviposition theory in plant–insect research. Oikos 96:187-191. doi:10.1034/j.1600-0706.2002.960121.x

    Google Scholar 

  • Scheirs J, Bruyn LD, Verhagen R (2000) Optimization of adult performance determines host choice in a grass miner. Proc Biol Sci 267:2065–2069

    Article  PubMed  CAS  Google Scholar 

  • Scheirs J, Zoebisch TG, Schuster DJ, De Bruyn L (2004) Optimal foraging shapes host preference of a polyphagous leafminer. Ecol Entomol 29:375–379. doi:10.1111/j.0307-6946.2004.00600.x

    Article  Google Scholar 

  • Taylor RM, Pfannenstiel RS (2008) Nectar feeding by wandering spiders on cotton plants. Environ Entomol 37:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14

    Article  Google Scholar 

  • U.S. Forest Service (2003) Forest health protection report: Forest insect and disease conditions in Alaska—2002. U.S. Forest Service, Alaska Region R10-TP-113

  • U.S. Forest Service (2010) Forest health conditions in Alaska—2009: A forest health protection report. U.S. Forest Service, Alaska Region R10-PR-21

  • Wäckers FL, van Rijn PCJ, Bruin J (2005) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge

  • Wäckers FL, Romeis J, van Rijn P (2007) Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu Rev Entomol 52:301–323. doi:10.1146/annurev.ento.52.110405.091352

    Article  PubMed  Google Scholar 

  • Wagner D, Nicklen EF (2010) Ant nest location, soil nutrients, and nutrient uptake by ant-associated plants: does extrafloral nectar attract ant nests and thereby enhance plant nutrition? J Ecol 98:614–624. doi:10.1111/j.1365-2745.2010.01640.x

    Article  Google Scholar 

  • Wagner D, DeFoliart L, Doak P, Schneiderheinze J (2008) Impact of epidermal leaf mining by the aspen leaf miner (Phyllocnistis populiella) on the growth, physiology, and leaf longevity of quaking aspen. Oecologia 157:259–267. doi:10.1007/s00442-008-1067-1

    Article  PubMed  Google Scholar 

  • Wagner D, Doak P, Sformo T, Steiner PM, Carlson B (2012) Overwintering physiology and microhabitat use of Phyllocnistis populiella (Lepidoptera: Gracilliariidae) in Interior Alaska. Environ Entomol 41:180-187. doi:10.1603/en11193

    Google Scholar 

  • Wooley SC, Donaldson JR, Gusse AC, Lindroth RL, Stevens MT (2007) Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression. Ann Bot 100:1337–1346. doi:10.1093/aob/mcm220

    Article  PubMed  Google Scholar 

  • Young B, Wagner D, Doak P, Clausen T (2010) Within-plant distribution of phenolic glycosides and extrafloral nectaries in trembling aspen (Populus tremuloides; Salicaceae). Am J Bot 97:601–610. doi:10.3732/ajb.0900281

    Article  PubMed  Google Scholar 

  • Yukon Forest Management (2011) 2010 Forest health report. Government of Yukon, Whitehorse Canada

Download references

Acknowledgments

We extend our gratitude to S. Wilbur for assistance in data collection, D. Sikes for assistance in arthropod identification, and the Life Sciences Informatics program at the Institute of Arctic Biology for computing services. This paper was improved thanks to comments by members of the Iowa State University Plant Group and B. Allman. Funding was provided by a National Science Foundation award (DEB 0543632) to D. Wagner and P. Doak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent Mortensen.

Additional information

Communicated by Colin Orians.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortensen, B., Wagner, D. & Doak, P. Parental resource and offspring liability: the influence of extrafloral nectar on oviposition by a leaf-mining moth. Oecologia 172, 767–777 (2013). https://doi.org/10.1007/s00442-012-2525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2525-3

Keywords

Navigation