Winter rainfall predicts phenology in widely separated populations of a migrant songbird

Abstract

Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east–west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Angelier F, Tonra CM, Holberton RL, Marra PP (2011) Short-term changes in body condition in relation to habitat and rainfall abundance in American redstarts Setophaga ruticilla during the non-breeding season. J Avian Biol 42:335–341. doi:10.1111/j.1600-048X.2011.05369.x

    Article  Google Scholar 

  2. Balbontín J, Møller AP, Hermosell IG, Marzal A, Reviriego M, de Lope F (2009a) Divergent patterns of impact of environmental conditions on life history traits in two populations of a long-distance migratory bird. Oecologia 159:859–872. doi:10.1007/s00442-008-1267-8

    PubMed  Article  Google Scholar 

  3. Balbontín J, Møller AP, Hermosell IG, Marzal A, Reviriego M, de Lope F (2009b) Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J Anim Ecol 78:981–989. doi:10.1111/j.1365-2656.2009.01573.x

    PubMed  Article  Google Scholar 

  4. Bates D, Martin M, Bolker B (2011) Lme4: linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4

  5. Bêty J, Giroux J-F, Gauthier G (2004) Individual variation in timing of migration: causes and reproductive consequences in greater snow geese (Anser caerulescens atlanticus). Behav Ecol Sociobiol 57:1–8. doi:10.1007/s00265-004-0840-3

    Article  Google Scholar 

  6. Both C (2010) Flexibility of timing of avian migration to climate change masked by environmental constraints en route. Curr Biol 20:243–248. doi:10.1016/j.cub.2009.11.074

    PubMed  Article  CAS  Google Scholar 

  7. Both C, te Marvelde L (2007) Climate change and timing of avian breeding and migration throughout Europe. Clim Res 35:93–105. doi:10.3354/cr00716

    Article  Google Scholar 

  8. Both C, Artemyev AV, Blaauw B, Cowie RJ, Dekhuijzen AJ, Eeva T, Enemar A, Gustafsson L, Ivankina EV, Järvinen A, Metcalfe NB, Nyholm NEI, Potti J, Ravussin P-A, Sanz JJ, Silverin B, Slater FM, Sokolov LV, Török J, Winkel W, Wright J, Zang H, Visser ME (2004) Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc R Soc Lond B 271:1657–1662. doi:10.1098/rspb.2004.2770

    Article  Google Scholar 

  9. Both C, Sanz JJ, Artemyev AV, Blaauw B, Cowie RJ, Dekhuizen AJ, Enemar A, Järvinen A, Nyholm NEI, Potti J, Ravussin P-A, Silverin B, Slater FM, Sokolov LV, Visser ME, Winkel W, Wright J, Zang H (2006) Pied flycatchers Ficedula hypoleuca travelling from Africa to breed in Europe: differential effects of winter and migration conditions on breeding date. Ardea 94:511–525

    Google Scholar 

  10. Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803. doi:10.1126/science.1157174

    PubMed  Article  CAS  Google Scholar 

  11. Conklin JR, Battley PF, Potter MA, Fox JW (2010) Breeding latitude drives individual schedules in a trans-hemispheric migrant bird. Nature Comm 1:67. doi:10.1038/ncomms1072

    Article  Google Scholar 

  12. Dunn PO, Winkler DW (1999) Climate change has affected the breeding date of tree swallows throughout North America. Proc R Soc Lond B 266:2487–2490

    Article  Google Scholar 

  13. Farmer A, Cade BS, Torres-Dowdall J (2008) Fundamental limits to the accuracy of deuterium isotopes for identifying the spatial origin of migratory animals. Oecologia 158:183–192. doi:10.1007/s00442-008-1143-6

    PubMed  Article  Google Scholar 

  14. Ficken MS (1963) Courtship of the American Redstart. Auk 80:307–317

    Article  Google Scholar 

  15. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178. doi:10.1111/j.1365-294X.2007.03413.x

    PubMed  Article  CAS  Google Scholar 

  16. Glantz SA, Slinker BK (2001) Primer of applied regression and analysis of variance, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  17. Gordo O, Sanz JJ (2008) The relative importance of conditions in wintering and passage areas on spring arrival dates: the case of long-distance Iberian migrants. J Ornithol 149:199–201. doi:10.1007/s10336-007-0260-z

    Article  Google Scholar 

  18. Gordo O, Brotons L, Ferrer X, Comas P (2005) Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds? Glob Change Biol 11:12–21. doi:10.1111/j.1365-2486.2004.00875.x

    Article  Google Scholar 

  19. Gunnarsson TG, Gill JA, Atkinson PW, Gélinaud G, Potts PM, Croger RE, Gudmundsson GA, Appleton GE, Sutherland WJ (2006) Population-scale drivers of individual arrival times in migratory birds. J Anim Ecol 75:1119–1127. doi:10.1111/j.1365-2656.2006.01131.x

    PubMed  Article  Google Scholar 

  20. Hitch AT, Leberg PL (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol 21:534–539. doi:10.1111/j.1523-1739.2006.00609.x

    PubMed  Article  Google Scholar 

  21. IPCC (2007) Climate change 2007: the physical basis. Contributions of Working Group I to the fourth assessment of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, Switzerland

  22. Jones J, Norris DR, Girvan MK, Barg JJ, Kyser TK, Robertson RJ (2008) Migratory connectivity and rate of population decline in a vulnerable songbird. Condor 110:538–544. doi:10.1525/cond.2008.8563

    Article  Google Scholar 

  23. Lehikoinen E, Sparks TH (2010) Changes in migration. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 89–112

    Google Scholar 

  24. Lozano GA, Perreault S, Lemon RE (1996) Age, arrival date and reproductive success of male American Redstarts Setophaga ruticilla. J Avian Biol 27:164–170

    Article  Google Scholar 

  25. Marra PP, Holmes RT (2001) Consequences of dominance-mediated habitat segregation in American redstarts during the nonbreeding season. Auk 118:92–104. doi:10.1642/0004-8038(2001)118[0092:CODMHS]2.0.CO;2

    Google Scholar 

  26. Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282:1884–1886. doi:10.1126/science.282.5395.1884

    PubMed  Article  CAS  Google Scholar 

  27. Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142:307–315. doi:10.1007/s00442-004-1725-x

    PubMed  Article  Google Scholar 

  28. Marra PP, Studds CE, Webster M (2010) Migratory connectivity. In: Breed MD, Moore J (eds) Encyclopedia of animal behavior. Academic, Oxford, pp 455–461

    Google Scholar 

  29. Matthysen E, Adriaensen F, Dhondt AA (2011) Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob Change Biol 17:1–16. doi:10.1111/j.1365-2486.2010.02213.x

    Article  Google Scholar 

  30. Møller AP (1994) Phenotype-dependent arrival time and its consequences in a migratory bird. Behav Ecol Sociobiol 35:115–122. doi:10.1007/BF00171501

    Article  Google Scholar 

  31. Møller AP, Merilä J (2004) Analysis and interpretation of long-term studies investigating responses to climate change. Adv Ecol Res 35:111–130. doi:10.1016/S0065-2504(04)35006-3

    Article  Google Scholar 

  32. Møller AP, Szép T (2005) Rapid evolutionary change in a secondary sexual character linked to climate change. J Evol Biol 18:481–495. doi:10.1111/j.1420-9101.2004.00807.x

    PubMed  Article  Google Scholar 

  33. Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci USA 103:6110–6115. doi:10.1073/pnas.0601798103

    PubMed  Article  CAS  Google Scholar 

  34. Norris DR, Marra PP, Bowen GJ, Ratcliffe LM, Royle JA, Kyser TK (2006) Migratory connectivity of a widely distributed songbird, the American redstart (Setophaga ruticilla). Ornithol Monogr 2006:14–28

    Article  Google Scholar 

  35. Pyle P (1997) Identification guide to North American birds. Part 1. Slate Creek Press, Bolinas

    Google Scholar 

  36. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  37. Reudink MW, Marra PP, Kyser TK, Boag PT, Langin KM, Ratcliffe LM (2009) Non-breeding season events influence sexual selection in a long-distance migratory bird. Proc R Soc Lond B 276:1619–1626. doi:10.1098/rspb.2008.1452

    Article  Google Scholar 

  38. Robson D, Barriocanal C (2011) Ecological conditions in wintering and passage areas as determinants of timing of spring migration in trans-Saharan migratory birds. J Anim Ecol 80:320–331. doi:10.1111/j.1365-2656.2010.01772.x

    PubMed  Article  Google Scholar 

  39. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi:10.1038/nature01333

    PubMed  Article  CAS  Google Scholar 

  40. Saino N, Szép T, Romano M, Rubolini D, Spina F, Møller AP (2004) Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol Lett 7:21–25. doi:10.1046/j.1461-0248.2003.00553.x

    Article  Google Scholar 

  41. Saino N, Rubolini D, Jonzén N, Ergon T, Montemaggiori A, Stenseth NC, Spina F (2007) Temperature and rainfall anomalies in Africa predict timing of spring migration in trans-Saharan migratory birds. Clim Res 35:123–134. doi:10.3354/cr00719

    Article  Google Scholar 

  42. Sanz JJ (2002) Climate change and breeding parameters of great and blue tits throughout the western Palaearctic. Glob Change Biol 8:409–422. doi:10.1046/j.1365-2486.2002.00496.x

    Article  Google Scholar 

  43. Sherry TW, Holmes RT (1997) American Redstart (Setophaga ruticilla). In: Pool A (ed) The birds of North America Online. Cornell Lab of Ornithology, Ithaca. http://bna.birds.cornell.edu/bna/

  44. Smith RJ, Moore FR (2005) Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav Ecol Sociobiol 57:231–239. doi:10.1007/s00265-004-0855-9

    Article  Google Scholar 

  45. Smith RJ, Mabey SE, Moore FR (2009) Spring passage and arrival patterns of American redstarts in Michigan’s eastern upper peninsula. Wilson J Ornithol 121:290–297. doi:10.1676/08-051.1

    Article  Google Scholar 

  46. Studds CE, Marra PP (2007) Linking fluctuations in rainfall to nonbreeding season performance in a long-distance migratory bird, Setophaga ruticilla. Clim Res 35:115–122. doi:10.3354/cr00718

    Article  Google Scholar 

  47. Studds CE, Marra PP (2011) Rainfall induced changes in food availability modify the spring departure program of a migratory bird. Proc R Soc Lond B 278:3437–3443. doi:10.1098/rspb.2011.0332

    Article  Google Scholar 

  48. Studds CE, Kyser TK, Marra PP (2008) Natal dispersal driven by environmental conditions interacting across the annual cycle of a migratory songbird. Proc Natl Acad Sci USA 105:2929–2933. doi:10.1073/pnas.0710732105

    PubMed  Article  CAS  Google Scholar 

  49. Thomas CD, Lennon JL (1999) Birds extend their ranges northwards. Nature 399:213. doi:10.1038/20335

    Article  CAS  Google Scholar 

  50. Tonra CM, Marra PP, Holberton RL (2011) Migration phenology and winter habitat quality are related to circulating androgen in a long-distance migratory bird. J Avian Biol 42:397–404. doi:10.1111/j.1600-048X.2011.05333.x

    Article  Google Scholar 

  51. Tøttrup AP, Thorup K, Rainio K, Yosef R, Lehikoinen E, Rahbek C (2008) Avian migrants adjust migration in response to environmental conditions en route. Biol Lett 4:685–688. doi:10.1098/rsbl.2008.0290

    PubMed  Article  Google Scholar 

  52. Tøttrup AP, Rainio K, Coppack T, Lehikoinen E, Rahbek C, Thorup K (2010) Local temperature fine-tunes the timing of spring migration in birds. Integr Comp Biol 50:293–304. doi:10.1093/icb/icq028

    PubMed  Article  Google Scholar 

  53. Visser ME, Adriaensen R, van Balen JH, Blondel J, Dhondt AA, van Dongen S, du Feu C, Ivankina EV, Kerimov AB, de Laet J, Matthysen E, McCleery R, Orell M, Thomson DL (2003) Variable responses to large-scale climate change in European Parus populations. Proc R Soc Lond B 270:367–372. doi:10.1098/rspb.2002.2244

    Article  Google Scholar 

  54. Wilson S, LaDeau SL, Tøttrup AP, Marra PP (2011) Range-wide effects of breeding- and nonbreeding season climate on the abundance of a Neotropical migrant songbird. Ecology 92:1789–1798. doi:10.1890/10-1757.1

    PubMed  Article  Google Scholar 

  55. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We thank all of the field assistants who contributed to this study. C. Eckert helped with data analysis. Funding was provided by Queen’s University, the Natural Sciences and Engineering Research Council of Canada, the Canadian Foundation for Innovation, the National Science Foundation, the Smithsonian Institution, the Ontario Innovation Trust, Sigma Xi, the American Ornithologists’ Union, the Society of Canadian Ornithologists, and the American Museum of Natural History. Procedures were performed in accordance with permits from the Queen’s University Animal Care Committee (Ratcliffe-2010-009) and the Canadian Wildlife Services (banding permit 10771E and collection permit CA0233). All methods used in this study comply with current laws of the country in which they were performed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ann E. McKellar.

Additional information

Communicated by Ola Olsson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McKellar, A.E., Marra, P.P., Hannon, S.J. et al. Winter rainfall predicts phenology in widely separated populations of a migrant songbird. Oecologia 172, 595–605 (2013). https://doi.org/10.1007/s00442-012-2520-8

Download citation

Keywords

  • American redstart
  • Climate change
  • Migration
  • Migratory connectivity
  • Setophaga ruticilla