Skip to main content
Log in

Evolutionary determinants of population differences in population growth rate × habitat temperature interactions in Chironomus riparius

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Little is known about intraspecific variation in fitness performance in response to thermal stress among natural populations and how this relates to evolutionary aspects of species ecology. In this study, population growth rate (PGR; a composite fitness measure) varied among five natural Chironomus riparius populations sampled across a climatic gradient when subjected to three temperature treatments reflecting the typical range of summer habitat temperatures (20, 24 and 28 °C). The variation could be explained by a complex model including effects of genetic drift, genetic diversity and adaptation to average temperature during the warmest month, in addition to experimental temperature. All populations suffered a decrease in PGR from 20 to 28 °C and ΔPGR was significantly correlated with the respective average habitat temperature in the warmest month—populations from warmer areas showing lower ΔPGR. This implies that long-term exposure to higher temperatures in the warmest month (the key reproductive period for C. riparius) is likely to be a key selective force influencing fitness at higher temperatures. A comparison of phenotypic divergence and neutral genetic differentiation revealed that one phenotypic trait—the number of fertile egg masses per female—appeared to be under positive selection in some populations. Our findings support a role for response to temperature selection along a climatic gradient and suggest population history is a key determinant of intraspecific fitness variation. We stress the importance of integrating different types of data (climatic, experimental, genetic) in order to understand the effects of global climate change on biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armitage PD, Cranston PS, Pinder LCV (1995) The Chironomidae: biology and ecology of non-biting midges. Chapman & Hall, London

    Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. In: Laboratoire génome, populations, interactions. CNRS UMR 5000, Université de Montpellier II, Montpellier

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45. doi:10.1086/392950

    Article  PubMed  CAS  Google Scholar 

  • Brommer JE (2011) Whither P-st? The approximation of Q(st) by P-st in evolutionary and conservation biology. J Evol Biol 24:1160–1168. doi:10.1111/j.1420-9101.2011.02268.x

    Article  PubMed  CAS  Google Scholar 

  • Coulson T, Kruuk LEB, Tavecchia G, Pemberton JM, Clutton-Brock TH (2003) Estimating selection on neonatal traits in red deer using elasticity path analysis. Evolution 57:2879–2892. doi:10.1554/03-126

    PubMed  CAS  Google Scholar 

  • Deutsch CA, et al. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672. doi:10.1073/pnas.0709472105

    Article  PubMed  CAS  Google Scholar 

  • Folguera G, Bastias DA, Bozinovic F (2009) Impact of experimental thermal amplitude on ectotherm performance: adaptation to climate change variability? Comp Biochem Physiol A Mol Integr Physiol 154:389–393. doi:10.1016/j.cbpa.2009.07.008

    Article  PubMed  Google Scholar 

  • Frankham R (2005) Stress and adaptation in conservation genetics. J Evol Biol 18:750–755. doi:10.1111/j.1420-9101.2005.00885.x

    Article  PubMed  CAS  Google Scholar 

  • Frouz J, Ali A, Lobinske RJ (2002) Influence of temperature on developmental rate, wing length, and larval head capsule size of pestiferous midge Chironomus crassicaudatus (Diptera: Chironomidae). J Econ Entomol 95:699–705. doi:10.1603/0022-0493-95.4.699

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485. doi:10.1038/nature09670

    Article  PubMed  CAS  Google Scholar 

  • Hommen U (2005) Ableitung von Populationswachstumsraten aus Lebensdatenstudien mit Chironomus riparius. Frauenhofer Institut für Molekularbiologie und angewandte Ökologie, Schmallenberg

  • Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135. doi:10.1016/0169-5347(89)90211-5

    Article  PubMed  CAS  Google Scholar 

  • Huey RB, Kingsolver JG (1993) Evolution of resistance to high-temperature in ectotherms. Am Nat 142:S21–S46. doi:10.1086/285521

    Article  Google Scholar 

  • Huey RB, Partridge L, Fowler K (1991) Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection. Evolution 45:751–756. doi:10.2307/2409925

    Article  Google Scholar 

  • Kingsolver JG, Gomulkiewicz R (2003) Environmental variation and selection on performance curves. Integr Comp Biol 43:470–477. doi:10.1093/icb/43.3.470

    Article  PubMed  Google Scholar 

  • Le Rouzic A, Carlborg O (2008) Evolutionary potential of hidden genetic variation. Trends Ecol Evol 23:33–37. doi:10.1016/j.tree.2007.09.014

    Article  PubMed  Google Scholar 

  • Liefting M, Hoffmann AA, Ellers J (2009) Plasticity versus environmental canalization: population differences in thermal responses along a latitudinal gradient in Drosophila serrata. Evolution 63:1954–1963. doi:10.1111/j.1558-5646.2009.00683.x

    Article  PubMed  Google Scholar 

  • Lynch M (2007) The origins of genome architecture, 1st edn. Sinauer, Massachusetts

  • MacIsaac HJ, Hebert PDN, Schwartz SS (1985) Inter- and intraspecific variation in acute thermal tolerance of Daphnia. Physiol Zool 58:350–355

    Google Scholar 

  • Miehlbradt J, Neumann D (1976) Reproductive isolation via optical swarming behavior in sympatric Chironomus thimmi and Chironomus piger. Behaviour 58:272–297. doi:10.1163/156853976x00190

    Article  Google Scholar 

  • Nemec S, Heß M, Nowak C, Pfenninger M (2012) Experimental evidence for niche segregation in a sister species pair of non-biting midges. Hydrobiologia 691:203–212. doi:10.1007/s10750-012-1074-4

    Article  CAS  Google Scholar 

  • Nowak C, Hankeln T, Schmidt ER, Schwenk K (2006) Development and localization of microsatellite markers for the sibling species Chironomus riparius and Chironomus piger (Diptera: Chironomidae). Mol Ecol Notes 6:915–917. doi:10.1111/j.1471-8286.2006.01398.x

    Article  CAS  Google Scholar 

  • Nowak C, Vogt C, Diogo JB, Schwenk K (2007) Genetic impoverishment in laboratory cultures of the test organism Chironomus riparius. Environ Toxicol Chem 26:1018–1022. doi:10.1897/06-349r.1

    Article  PubMed  CAS  Google Scholar 

  • Nowak C, Czeikowitz A, Vogt C, Oetken M, Streit B, Schwenk K (2008) Variation in sensitivity to cadmium among genetically characterized laboratory strains of the midge Chironomus riparius. Chemosphere 71:1950–1956. doi:10.1016/j.chemosphere.2007.12.023

    Article  PubMed  CAS  Google Scholar 

  • OECD (2004) Sediment-water chironomid toxicity test using spiked water. OECD guidelines for the testing of chemicals (original guideline 219, adopted 13 April 2004)

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pinder LCV (1986) Biology of freshwater Chironomidae. Annu Rev Entomol 31:1–23

    Article  Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103. doi:10.1554/0014-3820(2001)055

    PubMed  CAS  Google Scholar 

  • Salamin N, Wueest RO, Lavergne S, Thuiller W, Pearman PB (2010) Assessing rapid evolution in a changing environment. Trends Ecol Evol 25:692–698. doi:10.1016/j.tree.2010.09.000

    Article  PubMed  Google Scholar 

  • Sandrock C, Razmjou J, Vorburger C (2011) Climate effects on life cycle variation and population genetic architecture of the black bean aphid, Aphis fabae. Mol Ecol 20:4165–4181. doi:10.1111/j.1365-294X.2011.05242.x

    Article  PubMed  Google Scholar 

  • Sankarperumal G, Pandian TJ (1991) Effect of temperature and chlorella density on growth and metamorphosis of Chironomus circumdatus (Kieffer) (Diptera). Aquat Insects 13:167–177. doi:10.1080/01650429109361438

    Article  Google Scholar 

  • Sibly RM, Hone J (2002) Population growth rate and its determinants: an overview. Phil Trans R Soc Lond Ser B Biol Sci 357:1153–1170. doi:10.1098/rstb.2002.1117

    Article  Google Scholar 

  • Stefan HG, Preudhomme EB (1993) Stream temperature estimation from air temperature. Water Resour Bull 29:27–45

    Article  Google Scholar 

  • Stevens MM (1998) Development and survival of Chironomus tepperi Skuse (Diptera: Chironomidae) at a range of constant temperatures. Aquat Insects 20:181–188

    Article  Google Scholar 

  • Urbanski J, Mogi M, O’Donnell D, DeCotiis M, Toma T, Armbruster P (2012) Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am Nat 179:490–500. doi:10.1086/664709

    Article  PubMed  Google Scholar 

  • Vogt C, Belz D, Galluba S, Nowak C, Oetken M, Oehlmann J (2007a) Effects of cadmium and tributyltin on development and reproduction of the non-biting midge Chironomus riparius (Diptera)—baseline experiments for future multi-generation studies. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng 42:1–9. doi:10.1080/10934520601015255

    Article  CAS  Google Scholar 

  • Vogt C, et al. (2007b) Interaction between genetic diversity and temperature stress on life-cycle parameters and genetic variability in midge Chironomus riparius populations. Clim Res 33:207–214. doi:10.3354/cr033207

    Article  Google Scholar 

  • Webb BW, Clack PD, Walling DE (2003) Water–air temperature relationships in a Devon river system and the role of flow. Hydrol Process 17:3069–3084. doi:10.1002/hyp.1280

    Article  Google Scholar 

  • Whitlock MC (2008) Evolutionary inference from QST. Mol Ecol 17:1885–1896. doi:10.1111/j.1365-294X.2008.03712.x

    Article  PubMed  Google Scholar 

  • Winne CT, Keck MB (2005) Intraspecific differences in thermal tolerance of the diamondback water snake (Nerodia rhombifer): effects of ontogeny, latitude, and sex. Comp Biochem Physiol A Mol Integr Physiol 140:141–149. doi:10.1016/j.cbpb.2004.11.009

    Article  PubMed  Google Scholar 

  • Winnepenninckx B, Backeljau T, Dewachter R (1993) Extraction of high-molecular-weight DNA from mollusks. Trends Genet 9:407

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research funding programme LOEWE (Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz) of the Hesse Ministry of Higher Education, Research, and the Arts. We appreciate the assistance of Miriam Imo and Joao Barateiro Diogo in field sampling and experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Pfenninger.

Additional information

Communicated by Carla Caceres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemec, S., Patel, S., Nowak, C. et al. Evolutionary determinants of population differences in population growth rate × habitat temperature interactions in Chironomus riparius . Oecologia 172, 585–594 (2013). https://doi.org/10.1007/s00442-012-2517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2517-3

Keywords

Navigation