, Volume 172, Issue 2, pp 585–594 | Cite as

Evolutionary determinants of population differences in population growth rate × habitat temperature interactions in Chironomus riparius

  • Sabrina Nemec
  • Simit Patel
  • Carsten Nowak
  • Markus PfenningerEmail author
Global change ecology - Original research


Little is known about intraspecific variation in fitness performance in response to thermal stress among natural populations and how this relates to evolutionary aspects of species ecology. In this study, population growth rate (PGR; a composite fitness measure) varied among five natural Chironomus riparius populations sampled across a climatic gradient when subjected to three temperature treatments reflecting the typical range of summer habitat temperatures (20, 24 and 28 °C). The variation could be explained by a complex model including effects of genetic drift, genetic diversity and adaptation to average temperature during the warmest month, in addition to experimental temperature. All populations suffered a decrease in PGR from 20 to 28 °C and ΔPGR was significantly correlated with the respective average habitat temperature in the warmest month—populations from warmer areas showing lower ΔPGR. This implies that long-term exposure to higher temperatures in the warmest month (the key reproductive period for C. riparius) is likely to be a key selective force influencing fitness at higher temperatures. A comparison of phenotypic divergence and neutral genetic differentiation revealed that one phenotypic trait—the number of fertile egg masses per female—appeared to be under positive selection in some populations. Our findings support a role for response to temperature selection along a climatic gradient and suggest population history is a key determinant of intraspecific fitness variation. We stress the importance of integrating different types of data (climatic, experimental, genetic) in order to understand the effects of global climate change on biodiversity.


Chironomidae Adaptation potential Climate Change Life cycle experiments Genetic drift 



This work was supported by the research funding programme LOEWE (Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz) of the Hesse Ministry of Higher Education, Research, and the Arts. We appreciate the assistance of Miriam Imo and Joao Barateiro Diogo in field sampling and experiments.


  1. Armitage PD, Cranston PS, Pinder LCV (1995) The Chironomidae: biology and ecology of non-biting midges. Chapman & Hall, LondonGoogle Scholar
  2. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. In: Laboratoire génome, populations, interactions. CNRS UMR 5000, Université de Montpellier II, MontpellierGoogle Scholar
  3. Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45. doi: 10.1086/392950 PubMedCrossRefGoogle Scholar
  4. Brommer JE (2011) Whither P-st? The approximation of Q(st) by P-st in evolutionary and conservation biology. J Evol Biol 24:1160–1168. doi: 10.1111/j.1420-9101.2011.02268.x PubMedCrossRefGoogle Scholar
  5. Coulson T, Kruuk LEB, Tavecchia G, Pemberton JM, Clutton-Brock TH (2003) Estimating selection on neonatal traits in red deer using elasticity path analysis. Evolution 57:2879–2892. doi: 10.1554/03-126 PubMedGoogle Scholar
  6. Deutsch CA, et al. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672. doi: 10.1073/pnas.0709472105 PubMedCrossRefGoogle Scholar
  7. Folguera G, Bastias DA, Bozinovic F (2009) Impact of experimental thermal amplitude on ectotherm performance: adaptation to climate change variability? Comp Biochem Physiol A Mol Integr Physiol 154:389–393. doi: 10.1016/j.cbpa.2009.07.008 PubMedCrossRefGoogle Scholar
  8. Frankham R (2005) Stress and adaptation in conservation genetics. J Evol Biol 18:750–755. doi: 10.1111/j.1420-9101.2005.00885.x PubMedCrossRefGoogle Scholar
  9. Frouz J, Ali A, Lobinske RJ (2002) Influence of temperature on developmental rate, wing length, and larval head capsule size of pestiferous midge Chironomus crassicaudatus (Diptera: Chironomidae). J Econ Entomol 95:699–705. doi: 10.1603/0022-0493-95.4.699 PubMedCrossRefGoogle Scholar
  10. Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485. doi: 10.1038/nature09670 PubMedCrossRefGoogle Scholar
  11. Hommen U (2005) Ableitung von Populationswachstumsraten aus Lebensdatenstudien mit Chironomus riparius. Frauenhofer Institut für Molekularbiologie und angewandte Ökologie, SchmallenbergGoogle Scholar
  12. Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135. doi: 10.1016/0169-5347(89)90211-5 PubMedCrossRefGoogle Scholar
  13. Huey RB, Kingsolver JG (1993) Evolution of resistance to high-temperature in ectotherms. Am Nat 142:S21–S46. doi: 10.1086/285521 CrossRefGoogle Scholar
  14. Huey RB, Partridge L, Fowler K (1991) Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection. Evolution 45:751–756. doi: 10.2307/2409925 CrossRefGoogle Scholar
  15. Kingsolver JG, Gomulkiewicz R (2003) Environmental variation and selection on performance curves. Integr Comp Biol 43:470–477. doi: 10.1093/icb/43.3.470 PubMedCrossRefGoogle Scholar
  16. Le Rouzic A, Carlborg O (2008) Evolutionary potential of hidden genetic variation. Trends Ecol Evol 23:33–37. doi: 10.1016/j.tree.2007.09.014 PubMedCrossRefGoogle Scholar
  17. Liefting M, Hoffmann AA, Ellers J (2009) Plasticity versus environmental canalization: population differences in thermal responses along a latitudinal gradient in Drosophila serrata. Evolution 63:1954–1963. doi: 10.1111/j.1558-5646.2009.00683.x PubMedCrossRefGoogle Scholar
  18. Lynch M (2007) The origins of genome architecture, 1st edn. Sinauer, Massachusetts Google Scholar
  19. MacIsaac HJ, Hebert PDN, Schwartz SS (1985) Inter- and intraspecific variation in acute thermal tolerance of Daphnia. Physiol Zool 58:350–355Google Scholar
  20. Miehlbradt J, Neumann D (1976) Reproductive isolation via optical swarming behavior in sympatric Chironomus thimmi and Chironomus piger. Behaviour 58:272–297. doi: 10.1163/156853976x00190 CrossRefGoogle Scholar
  21. Nemec S, Heß M, Nowak C, Pfenninger M (2012) Experimental evidence for niche segregation in a sister species pair of non-biting midges. Hydrobiologia 691:203–212. doi: 10.1007/s10750-012-1074-4 CrossRefGoogle Scholar
  22. Nowak C, Hankeln T, Schmidt ER, Schwenk K (2006) Development and localization of microsatellite markers for the sibling species Chironomus riparius and Chironomus piger (Diptera: Chironomidae). Mol Ecol Notes 6:915–917. doi: 10.1111/j.1471-8286.2006.01398.x CrossRefGoogle Scholar
  23. Nowak C, Vogt C, Diogo JB, Schwenk K (2007) Genetic impoverishment in laboratory cultures of the test organism Chironomus riparius. Environ Toxicol Chem 26:1018–1022. doi: 10.1897/06-349r.1 PubMedCrossRefGoogle Scholar
  24. Nowak C, Czeikowitz A, Vogt C, Oetken M, Streit B, Schwenk K (2008) Variation in sensitivity to cadmium among genetically characterized laboratory strains of the midge Chironomus riparius. Chemosphere 71:1950–1956. doi: 10.1016/j.chemosphere.2007.12.023 PubMedCrossRefGoogle Scholar
  25. OECD (2004) Sediment-water chironomid toxicity test using spiked water. OECD guidelines for the testing of chemicals (original guideline 219, adopted 13 April 2004)Google Scholar
  26. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  27. Pinder LCV (1986) Biology of freshwater Chironomidae. Annu Rev Entomol 31:1–23CrossRefGoogle Scholar
  28. Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103. doi: 10.1554/0014-3820(2001)055 PubMedGoogle Scholar
  29. Salamin N, Wueest RO, Lavergne S, Thuiller W, Pearman PB (2010) Assessing rapid evolution in a changing environment. Trends Ecol Evol 25:692–698. doi: 10.1016/j.tree.2010.09.000 PubMedCrossRefGoogle Scholar
  30. Sandrock C, Razmjou J, Vorburger C (2011) Climate effects on life cycle variation and population genetic architecture of the black bean aphid, Aphis fabae. Mol Ecol 20:4165–4181. doi: 10.1111/j.1365-294X.2011.05242.x PubMedCrossRefGoogle Scholar
  31. Sankarperumal G, Pandian TJ (1991) Effect of temperature and chlorella density on growth and metamorphosis of Chironomus circumdatus (Kieffer) (Diptera). Aquat Insects 13:167–177. doi: 10.1080/01650429109361438 CrossRefGoogle Scholar
  32. Sibly RM, Hone J (2002) Population growth rate and its determinants: an overview. Phil Trans R Soc Lond Ser B Biol Sci 357:1153–1170. doi: 10.1098/rstb.2002.1117 CrossRefGoogle Scholar
  33. Stefan HG, Preudhomme EB (1993) Stream temperature estimation from air temperature. Water Resour Bull 29:27–45CrossRefGoogle Scholar
  34. Stevens MM (1998) Development and survival of Chironomus tepperi Skuse (Diptera: Chironomidae) at a range of constant temperatures. Aquat Insects 20:181–188CrossRefGoogle Scholar
  35. Urbanski J, Mogi M, O’Donnell D, DeCotiis M, Toma T, Armbruster P (2012) Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am Nat 179:490–500. doi: 10.1086/664709 PubMedCrossRefGoogle Scholar
  36. Vogt C, Belz D, Galluba S, Nowak C, Oetken M, Oehlmann J (2007a) Effects of cadmium and tributyltin on development and reproduction of the non-biting midge Chironomus riparius (Diptera)—baseline experiments for future multi-generation studies. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng 42:1–9. doi: 10.1080/10934520601015255 CrossRefGoogle Scholar
  37. Vogt C, et al. (2007b) Interaction between genetic diversity and temperature stress on life-cycle parameters and genetic variability in midge Chironomus riparius populations. Clim Res 33:207–214. doi: 10.3354/cr033207 CrossRefGoogle Scholar
  38. Webb BW, Clack PD, Walling DE (2003) Water–air temperature relationships in a Devon river system and the role of flow. Hydrol Process 17:3069–3084. doi: 10.1002/hyp.1280 CrossRefGoogle Scholar
  39. Whitlock MC (2008) Evolutionary inference from QST. Mol Ecol 17:1885–1896. doi: 10.1111/j.1365-294X.2008.03712.x PubMedCrossRefGoogle Scholar
  40. Winne CT, Keck MB (2005) Intraspecific differences in thermal tolerance of the diamondback water snake (Nerodia rhombifer): effects of ontogeny, latitude, and sex. Comp Biochem Physiol A Mol Integr Physiol 140:141–149. doi: 10.1016/j.cbpb.2004.11.009 PubMedCrossRefGoogle Scholar
  41. Winnepenninckx B, Backeljau T, Dewachter R (1993) Extraction of high-molecular-weight DNA from mollusks. Trends Genet 9:407PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sabrina Nemec
    • 1
    • 3
  • Simit Patel
    • 2
  • Carsten Nowak
    • 1
    • 3
  • Markus Pfenninger
    • 2
    Email author
  1. 1.Conservation Genetics SectionSenckenberg Gesellschaft für NaturforschungGelnhausenGermany
  2. 2.Molecular Ecology GroupBiodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung and Goethe UniversityFrankfurt am MainGermany
  3. 3.Adaptation and Climate GroupBiodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung and Goethe UniversityFrankfurt am MainGermany

Personalised recommendations